Journal of Solid State Electrochemistry

, Volume 20, Issue 11, pp 3115–3123 | Cite as

Titanium coated with high-performance nanocrystalline ruthenium oxide synthesized by the microwave-assisted sol–gel procedure

  • Gavrilo Šekularac
  • Milica Košević
  • Ivana Drvenica
  • Aleksandar Dekanski
  • Vladimir PanićEmail author
  • Branislav Nikolić
Original Paper


Ruthenium oxide coating on titanium was prepared by the sol–gel procedure from well-defined colloidal oxide dispersions synthesized by the microwave (MW)-assisted hydrothermal route under defined temperature and pressure heating conditions. The dispersions were characterized by dynamic light scattering (DLS) measurements and scanning electron microscopy (SEM). The electrochemical properties were analyzed as capacitive performances gained by cyclic voltammetry and electrochemical impedance spectroscopy and as the electrocatalytic activity for oxygen evolution from acid solution. The obtained dispersions were polydisperse and contained regular particles and agglomerates of increasing surface energy and decreasing particle size as the MW-assisted heating conditions were intensified. Owing to these features of the precursor dispersions, the obtained coatings had considerably improved capacitive performances and good electrocatalytic activity for oxygen evolution at high overpotentials.


Activated titanium anodes Dynamic light scattering Pseudocapacitance Noble metal oxides Oxide sols 



The financial support from the Ministry of Education, Science and Technological Development (project no. 172060) is acknowledged. The authors thank Dr. Uroš Lačnjevac from the Institute of Multidiscilinary Research, University of Belgrade, for the analysis on scanning electron microscope.

Supplementary material

10008_2016_3343_MOESM1_ESM.pdf (118 kb)
ESM 1 (PDF 118 kb)


  1. 1.
    Trasatti S (1999) In: Wieckowski A (ed) Interfacial electrochemistry—theory, experiment and applications. Marcel Dekker Inc., New York, p. 769Google Scholar
  2. 2.
    Hu JM, Zhang JQ, Cao CN (2000) Int J Hydrog Energy 29:791CrossRefGoogle Scholar
  3. 3.
    Santana MHP, De Faria LA, Boodts JFC (2004) Electrochim Acta 49:1925CrossRefGoogle Scholar
  4. 4.
    Comninellis C, Vercesi PG (1991) J Appl Electrochem 21:335CrossRefGoogle Scholar
  5. 5.
    Yagi M, Tomita E, Kuwabara T (2005) J Electroanal Chem 579:83CrossRefGoogle Scholar
  6. 6.
    Jung YW, Lee J, Tak Y (2004) Electrochem Solid State Lett 7:H5CrossRefGoogle Scholar
  7. 7.
    De Nora elettrodi network (2009) Accessed May 2009
  8. 8.
    Patil PS, Kawar RW, Sadale SB (2005) Electrochim Acta 50:2527CrossRefGoogle Scholar
  9. 9.
    Jovanović V, Dekanski A, Despotov P, Nikolić B, Atanasoski R (1992) J Electroanal Chem 339:147CrossRefGoogle Scholar
  10. 10.
    Yoshinaga N, Sugimoto W, Takasu Y (2008) Electrochim Acta 54:566CrossRefGoogle Scholar
  11. 11.
    Grupioni AAF, Arashiro E, Lassali TAF (2002) Electrochim Acta 48:407CrossRefGoogle Scholar
  12. 12.
    Marshall A, Borresen B, Hagen G, Tsypkin M, Tunold R (2005) Mater Chem Phys 94:226CrossRefGoogle Scholar
  13. 13.
    De Oliveira-Sousa A, da Silva MAS, Machado SAS, Avaca LA, De Lima-Neto P (2000) Electrochim Acta 45:4467CrossRefGoogle Scholar
  14. 14.
    Patil PS, Kawar RK, Sadale SB (2005) Appl Surf Sci 249:367CrossRefGoogle Scholar
  15. 15.
    Chen RS, Korotcov A, Huang YS, Tsai DS (2006) Nanotechnology 17:R67CrossRefGoogle Scholar
  16. 16.
    Xia MX, Wang CB, Gong YS, Shen Q, Zhang LM (2006) Rare Met Mater Eng 35:820Google Scholar
  17. 17.
    Mousty C, Fóty G, Comninellis C, Reid V (1999) Electrochim Acta 45:451CrossRefGoogle Scholar
  18. 18.
    Panić VV, Nikolić BŽ (2008) J Serb Chem Soc 73:1083CrossRefGoogle Scholar
  19. 19.
    Massot L, Palau P, Savall A, Taxil P (2007) J New Mater Electrochem Sys 10:123Google Scholar
  20. 20.
    Xu L, Xin Y, Wang J (2009) Electrochim. Acta 54:1820CrossRefGoogle Scholar
  21. 21.
    Osman JR, Crayston JA, Pratt A, Richens DT (2008) J Sol-Gel Sci Technol 46:126CrossRefGoogle Scholar
  22. 22.
    Faraji S, Nasir Ani F (2014) J Power Sources 263:338CrossRefGoogle Scholar
  23. 23.
    Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan J-L (2010) J Phys Chem C 114:2448CrossRefGoogle Scholar
  24. 24.
    Chang K-H, Hu C-C, Huang C-M, Liu L-Y, Chan C-I (2011) J Power Sources 196:2387CrossRefGoogle Scholar
  25. 25.
    Hu C-C, Yang LY, Lee T-C (2010) Electrochem Solid-State Lett 13:A173CrossRefGoogle Scholar
  26. 26.
    Kim J-Y, Kim K-H, Kim H-K, Park S-H, Chul Roh K, Kim K-B (2015) ACS Appl Mater Interfaces 7:16686CrossRefGoogle Scholar
  27. 27.
    Kim J-Y, Kim K-H, Kim H-K, Park S-H, Kyung Yoon Chung KY, Kim K-B (2014) RSC Adv 4:16115CrossRefGoogle Scholar
  28. 28.
    Nikolić BŽ, Panić V (2014) In: Kreysa G, Ota K-I, Savinell RF (eds) Encyclopedia of applied electrochemistry. Springer, New York, p. 411CrossRefGoogle Scholar
  29. 29.
    Karlsson RK, Cornell A (2016) Chem Rev 116:2982–3028CrossRefGoogle Scholar
  30. 30.
    Burke LD, Murphy OJ (1980) J Electroanal Chem Interf Electrochem 112:39–50CrossRefGoogle Scholar
  31. 31.
    Ardizzone S, Trasatti S (1996) Adv Colloid Interf Sci 64:173CrossRefGoogle Scholar
  32. 32.
    Liu T, Pell WG, Conway BE (1997) Electrochim Acta 42:3541CrossRefGoogle Scholar
  33. 33.
    Conway B (1999) Electrochemical supercapacitors—scientific fundamentals and technological applications. Plenum Publishers, New York, pp. 277–286Google Scholar
  34. 34.
    Panić V, Dekanski A, Milonjić S, Atanasoski R, Nikolić B (2000) Mater Sci Forum 352:117CrossRefGoogle Scholar
  35. 35.
    Trasatti S, Petrii OA (1992) J Electroanal Chem 327:353CrossRefGoogle Scholar
  36. 36.
    Pelegrino RRL, Vicentin LC, De Andrade AR, Bertazzoli R (2002) Electrochem Commun 4:139CrossRefGoogle Scholar
  37. 37.
    Wang Y, Foo CY, Hoo TK, Ng M, Lin J (2010) Chem Eur J 16:3598CrossRefGoogle Scholar
  38. 38.
    Guerrini E, Trasatti S (2006) Russ J Electrochem 42:1017CrossRefGoogle Scholar
  39. 39.
    Castelli P, Trasatti S, Pollak FH, Ogrady WE (1986) J Electroanal Chem 210:189CrossRefGoogle Scholar
  40. 40.
    Fang Y-H, Liu Z-P (2010) J Am Chem Soc 132:18214CrossRefGoogle Scholar
  41. 41.
    Alves VA, Silva LA, Boodts JFC (1998) J Appl Electrochem 28:899CrossRefGoogle Scholar
  42. 42.
    Lassali TAF, Boodts JFC, Bulhões LOS (2000) J Appl Electrochem 30:625CrossRefGoogle Scholar
  43. 43.
    Panić VV, Vidaković TR, Dekanski AB, Mišković-Stanković VB, Nikolić B (2007) J Electroanal Chem 609:120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gavrilo Šekularac
    • 1
  • Milica Košević
    • 1
  • Ivana Drvenica
    • 2
  • Aleksandar Dekanski
    • 1
  • Vladimir Panić
    • 1
    Email author
  • Branislav Nikolić
    • 3
  1. 1.Institute of Chemistry, Technology and Metallurgy, Department of ElectrochemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Innovation Center of the Faculty of Technology and MetallurgyBelgradeSerbia
  3. 3.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations