Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 12, pp 3481–3490 | Cite as

Control of the LiFePO4 electrochemical properties using low-cost iron precursor in a melt process

  • M. Talebi-Esfandarani
  • S. Rousselot
  • M. Gauthier
  • P. Sauriol
  • M. Duttine
  • A. Wattiaux
  • Y. Liu
  • A. X. Sun
  • G. Liang
  • M. Dollé
Original Paper

Abstract

LiFePO4 was prepared from low-cost iron ore concentrate (containing 4.48 wt.% SiO2 and MgO, CaO and Al2O3 below 0.5 wt.% as contaminant) using a melt synthesis. X-ray diffraction (XRD) refinement associated with Mössbauer spectroscopy and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDX) analyses are used to track the location of Si in the material. It is shown that the iron content in the melt can be used as a means to control the doping rate of elements from iron ore concentrate (IOC) precursor according to the formula (Li1 − z A z )(Fe1 − y M y )(P1 − x Si x )O4. Electrochemical behavior of the material is affected by the doping of LiFePO4. While capacity is decreased in doped material, the cycling stability is much improved. When dopants are out of LiFePO4 structure, capacity retention dramatically drops as well as capacity due to the gravimetric impact of impurity phases. A trade-off between high capacity and best cycling performance is necessary. For instance, slight lack of iron in the melt (6 % deficiency) leads to a capacity only 2 % lower than that of pure Fe2O3-based material for the same stoichiometry and fairly good capacity retention.

Keywords

LiFePO4 Melt synthesis Iron ore concentrate Compositions Impurities 

Notes

Acknowledgments

The authors would like to thank NSERC and CFI, through the Automotive Partnership Canada program, and Johnson-Matthey Inc. for their financial support.

References

  1. 1.
    Arico AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  2. 2.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367CrossRefGoogle Scholar
  3. 3.
    Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries. J Power Sources 196(5):2452–2460CrossRefGoogle Scholar
  4. 4.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRefGoogle Scholar
  5. 5.
    Goodenough JB, Kim Y (2011) Challenges for rechargeable batteries. J Power Sources 196(16):6688–6694CrossRefGoogle Scholar
  6. 6.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x<-1): a new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789CrossRefGoogle Scholar
  7. 7.
    Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22(3):691–714CrossRefGoogle Scholar
  8. 8.
    Song H-K, Lee KT, Kim MG, Nazar LF, Cho J (2010) Recent progress in nanostructured cathode materials for lithium secondary batteries. Adv Funct Mater 20(22):3818–3834CrossRefGoogle Scholar
  9. 9.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  10. 10.
    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229CrossRefGoogle Scholar
  11. 11.
    Huang H, Yin S-C, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State 4(10):A170–A172CrossRefGoogle Scholar
  12. 12.
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97–98(0):503–507CrossRefGoogle Scholar
  13. 13.
    Armand, M, Gauhtier, M, Magnan, JF, and Ravet, N 2002 Method for synthesis of carbon-coated redox materials with controlled size. WO 02/27823 A1Google Scholar
  14. 14.
    Talebi-Esfandarani M, Savadogo O (2014) Enhancement of electrochemical properties of platinum doped LiFePO4/C cathode material synthesized using hydrothermal method. Solid State Ionics 261(0):81–86CrossRefGoogle Scholar
  15. 15.
    Doeff MM, Hu Y, Mclarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State 6(10):A207–A209CrossRefGoogle Scholar
  16. 16.
    Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163(1):180–184CrossRefGoogle Scholar
  17. 17.
    Omenya F, Chernova NA, Zhang R, Fang J, Huang Y, Cohen F, Dobrzynski N, Senanayake S, Xu W, Whittingham MS (2012) Why substitution enhances the reactivity of LiFePO4. Chem Mater 25(1):85–89CrossRefGoogle Scholar
  18. 18.
    Talebi-Esfandarani M, Savadogo O (2014) Synthesis and characterization of Pt-doped LiFePO4/C composites using the sol–gel method as the cathode material in lithium-ion batteries. J Appl Electrochem 44(5):555–562CrossRefGoogle Scholar
  19. 19.
    Chen J, Bai J, Chen H, Graetz J (2011) In situ hydrothermal synthesis of LiFePO4 studied by synchrotron X-ray diffraction. J Phys Chem Lett 2(15):1874–1878CrossRefGoogle Scholar
  20. 20.
    Zhang W-J (2010) Comparison of the rate capacities of LiFePO4 cathode materials. J Electrochem Soc 157(10):A1040–A1046CrossRefGoogle Scholar
  21. 21.
    Omenya F, Chernova NA, Wang Q, Zhang R, Whittingham MS (2013) The structural and electrochemical impact of Li and Fe site substitution in LiFePO4. Chem Mater 25(13):2691–2699CrossRefGoogle Scholar
  22. 22.
    Talebi-Esfandarani M, Savadogo O (2014) Effects of palladium doping on the structure and electrochemical properties of LiFePO4/C prepared using the sol-gel method. J New Mater Electrochem Syst 17(2):91–97Google Scholar
  23. 23.
    Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3(3):147–152CrossRefGoogle Scholar
  24. 24.
    Ojczyk W, Marzec J, Świerczek K, Zając W, Molenda M, Dziembaj R, Molenda J (2007) Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries. J Power Sources 173(2):700–706CrossRefGoogle Scholar
  25. 25.
    Kang H, Wang G, Guo H, Chen M, Luo C, Yan K (2012) Facile synthesis and electrochemical performance of LiFePO4/C composites using Fe–P waste slag. Ind Eng Chem Res 51(23):7923–7931CrossRefGoogle Scholar
  26. 26.
    Gauthier L, Gauthier M, Lavoie D, Michot C, Ravet N (2003) Process for preparing electroactive insertion compounds and electrode materials obtained therefrom in US Patent 7,534,408 B2Google Scholar
  27. 27.
    Gauthier M, Michot C, Ravet N, Duchesneau M, Dufour J, Liang G, Wontcheu J, Gauthier L, Macneil DD (2010) Melt casting LiFePO4: I. Synthesis and characterization. J Electrochem Soc 157(4):A453–A462CrossRefGoogle Scholar
  28. 28.
    Macneil DD, Devigne L, Michot C, Rodrigues I, Liang G, Gauthier M (2010) Melt casting LiFePO4: II. Particle size reduction and electrochemical evaluation. J Electrochem Soc 157(4):A463–A468CrossRefGoogle Scholar
  29. 29.
    Daheron B, Macneil D (2011) Study of LiFePO4 synthesized using a molten method with varying stoichiometries. J Solid State Electrochem 15(6):1217–1225CrossRefGoogle Scholar
  30. 30.
    Talebi-Esfandarani M, Rousselot S, Gauthier M, Sauriol P, Liang G, Dollé M (2015) LiFePO4 synthesized via melt process using low cost iron precursors. J Solid State Electrochem 20(7):1821–1829CrossRefGoogle Scholar
  31. 31.
    Nishijima, M, Ootani, T, Kamimura, Y, Sueki, T, Esaki, S, Murai, S, Fujita, K, Tanaka, K, Ohira, K, Koyama, Y, and Tanaka, I (2014) Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nat Commun 5Google Scholar
  32. 32.
    Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien CM (2009) Nonstoichiometric LiFePO4: defects and related properties. Chem Mater 21(8):1636–1644CrossRefGoogle Scholar
  33. 33.
    Brand, R 2008 WinNormos Software, Universität Duisburg-Essen, G. Duisbourg, EditorGoogle Scholar
  34. 34.
    Osterheld RK (1968) Liquidus diagram for the system lithium orthophosphate-lithium metaphosphate. J Inorg Nucl Chem 30(12):3173–3175CrossRefGoogle Scholar
  35. 35.
    Badi S-P, Wagemaker M, Ellis BL, Singh DP, Borghols WJH, Kan WH, Ryan DH, Mulder FM, Nazar LF (2011) Direct synthesis of nanocrystalline Li0.90FePO4: observation of phase segregation of anti-site defects on delithiation. J Mater Chem 21(27):10085–10093CrossRefGoogle Scholar
  36. 36.
    Jensen KMØ, Christensen M, Gunnlaugsson HP, Lock N, Bøjesen ED, Proffen T, Iversen BB (2013) Defects in hydrothermally synthesized LiFePO4 and LiFe1-xMnxPO4 cathode materials. Chem Mater 25(11):2282–2290CrossRefGoogle Scholar
  37. 37.
    Hamelet S, Gibot P, Casas-Cabanas M, Bonnin D, Grey CP, Cabana J, Leriche J-B, Rodriguez-Carvajal J, Courty M, Levasseur S, Carlach P, Van Thournout M, Tarascon J-M, Masquelier C (2009) The effects of moderate thermal treatments under air on LiFePO4-based nano powders. J Mater Chem 19(23):3979–3991CrossRefGoogle Scholar
  38. 38.
    Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130(1–2):41–52CrossRefGoogle Scholar
  39. 39.
    Jensen KMØ, Gunnlaugsson HP, Christensen M, Iversen BB (2014) Môssbauer spectroscopy study of defects in hydrothermally synthesized LiFePO4 cathode material. Hyperfine Interact 226:73–78CrossRefGoogle Scholar
  40. 40.
    Maccario M, Croguennec L, Wattiaux A, Suard E, Le Cras F, Delmas C (2008) C-containing LiFePO4 materials—part I: mechano-chemical synthesis and structural characterization. Solid State Ionics 179:2020–2026CrossRefGoogle Scholar
  41. 41.
    Meethong N, Kao Y-H, Speakman SA, Chiang Y-M (2009) Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties. Adv Funct Mater 19(7):1060–1070CrossRefGoogle Scholar
  42. 42.
    Wagemaker M, Singh DP, Borghols WJH, Lafont U, Haverkate L, Peterson VK, Mulder FM (2011) Dynamic solubility limits in nanosized olivine LiFePO4. J Am Chem Soc 133(26):10222–10228CrossRefGoogle Scholar
  43. 43.
    Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R (2012) The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem Commun 14(1):47–50CrossRefGoogle Scholar
  44. 44.
    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458(7235):190–193CrossRefGoogle Scholar
  45. 45.
    Kim JC, Li X, Kang B, Ceder G (2015) High-rate performance of a mixed olivine cathode with off-stoichiometric composition. Chem Commun 51(68):13279–13282CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Talebi-Esfandarani
    • 1
  • S. Rousselot
    • 1
  • M. Gauthier
    • 1
  • P. Sauriol
    • 2
  • M. Duttine
    • 3
  • A. Wattiaux
    • 3
  • Y. Liu
    • 4
  • A. X. Sun
    • 4
  • G. Liang
    • 5
  • M. Dollé
    • 1
  1. 1.Department of ChemistryUniversity of MontrealMontrealCanada
  2. 2.Department of Chemical EngineeringEcole Polytechnique de MontrealMontrealCanada
  3. 3.Institut de Chimie de la Matière Condensée de BordeauxCNRS-Université de BordeauxPessac CedexFrance
  4. 4.University of Western OntarioLondonCanada
  5. 5.Johnson Matthey Battery Materials Ltd.CandiacCanada

Personalised recommendations