Journal of Solid State Electrochemistry

, Volume 20, Issue 12, pp 3279–3286 | Cite as

Theoretical and experimental study of the catalytic cathodic stripping square-wave voltammetry of chromium species

  • Mariela Cuéllar
  • Sabrina N. Vettorelo
  • Patricia I. Ortiz
  • Fernando GarayEmail author
Original Paper


The electrocatalytic mechanism of Cr(III) reduction in the presence of diethylenetriaminepentaacetic acid (DTPA) and nitrate ions is studied theoretically and experimentally by using stripping square-wave voltammetry (SWV). Experimental curves are in excellent agreement with theoretical profiles corresponding to a catalytic reaction of second kind. This type of mechanism is equivalent to a CE mechanism, where the chemical reaction produces the electroactive species. Accordingly, the reaction of Cr(III)–H2O–DTPA and \( {\mathrm{NO}}_3^{-} \) would produce the electroactive species Cr(III)–NO3–DTPA and this last species would release \( {\mathrm{NO}}_2^{-} \) to the solution during the electrochemical step. In this regard, the complex of Cr(III)–DTPA would work as the catalyzer that allows the reduction of \( {\mathrm{NO}}_3^{-} \) to \( {\mathrm{NO}}_2^{-} \). Furthermore, it was found that the electrochemical reaction is quite irreversible, with a constant of k s = 9.4 × 10−5 cm s−1, while the constant for the chemical step has been estimated to be k chem = 1.3 × 104 s−1. Considering that the equilibrium constant is K = 0.01, it is possible to estimate the kinetic constants of the chemical reaction as k 1 = 1 × 102 s−1 and k −1 = 1.29 × 104 s−1. These values of k 1 and k −1 indicate that the exchange of water molecules by nitrate is fast and that the equilibrium favors the complex with water. Also, a value for the formal potential E°’ ≈ −1.1 V was obtained. The model used for simulating experimental curves does not consider the adsorption of reactants yet. Accordingly, weak adsorption of reagents should be expected.


Square-wave voltammetry Catalytic Mathematical modelling DTPA CE mechanism Cr speciation Catalysis of second type 



Financial support from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo para la Investigación Científica y Tecnológica (FONCYT) and Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT-UNC) is gratefully acknowledged. M. C. and S. V. acknowledge CONICET for the fellowships granted.


  1. 1.
    Espada-Bellido E, Bi Z, van den Berg CMG (2013) Talanta 105:287–291CrossRefGoogle Scholar
  2. 2.
    Ouyang R, Zhang W, Zhou S, Xue ZL, Xu L, Gu Y, Miao Y (2013) Electrochim Acta 113:686–693CrossRefGoogle Scholar
  3. 3.
    Van den Berg CMG, Huang ZQ (1984) Anal Chem 56:2383–2386CrossRefGoogle Scholar
  4. 4.
    Boussemart M, Van den Berg CMG, Ghaddaf M (1992) Anal Chim Acta 262:103–115CrossRefGoogle Scholar
  5. 5.
    Biver M, Quentel F, Filella M (2015) Talanta 144:1007–1013CrossRefGoogle Scholar
  6. 6.
    Caprara S, Laglera LM, Monticelli D (2015) Anal Chem 87:6357–6363CrossRefGoogle Scholar
  7. 7.
    Vega M, Van den Berg CMG (1997) Anal Chem 69:874–881CrossRefGoogle Scholar
  8. 8.
    Laglera LM, Santos-Echeandía J, Caprara S, Monticelli D (2013) Anal Chem 85:2486–2492CrossRefGoogle Scholar
  9. 9.
    Mirčeski V, Bobrowski A, Zarebski J, Spasovski F (2010) Electrochim Acta 55:8696–8703CrossRefGoogle Scholar
  10. 10.
    Bobrowski A, Baś B, Dominik J, Niewiara E, Szalińska E, Vignati D, Zarebski J (2004) Talanta 63:1003–1012CrossRefGoogle Scholar
  11. 11.
    Li Y, Xue H (2001) Anal Chim Acta 448:121–134CrossRefGoogle Scholar
  12. 12.
    Golimowski J, Valenta P, Nürnberg HW (1985) Fresenius’ Z Anal Chem 322:315–322CrossRefGoogle Scholar
  13. 13.
    Scholz F, Draheim M, Henrion G (1990) Fresenius J Anal Chem 336:136–138CrossRefGoogle Scholar
  14. 14.
    Scholz F, Lange B, Pelzer DM (1990) Fresenius J Anal Chem 338:627–629CrossRefGoogle Scholar
  15. 15.
    Bucci R, Magri AL, Napoli A (1991) J Coord Chem 21:169–175CrossRefGoogle Scholar
  16. 16.
    Lovrić M, Komorsky-Lovrić Š, Bond A (1991) J Electroanal Chem 319:1–18CrossRefGoogle Scholar
  17. 17.
    Lovrić M (2013) J Chil Chem Soc 58:2191–2195Google Scholar
  18. 18.
    Garay F (2001) J Electroanal Chem 505:100–108CrossRefGoogle Scholar
  19. 19.
    Garay F, Solis VM (2001) J Electroanal Chem 505:109–117CrossRefGoogle Scholar
  20. 20.
    Garay F (2003) J Electroanal Chem 548:1–9CrossRefGoogle Scholar
  21. 21.
    Garay F (2003) J Electroanal Chem 548:11–18CrossRefGoogle Scholar
  22. 22.
    Vettorelo SN, Garay F (2016) J Solid State Elect. doi: 10.1007/s10008-016-3273-9
  23. 23.
    Zarebski J, Bobrowski A, Królicka PM (2009) Collect Czech Chem Commun 74:1715–1725CrossRefGoogle Scholar
  24. 24.
    Smith DE (1963) Anal Chem 35:602–609CrossRefGoogle Scholar
  25. 25.
    Garay F, Lovrić M (2002) J Electroanal Chem 518:91–102CrossRefGoogle Scholar
  26. 26.
    Mirčeski V, Komorsky-Lovrić S, Lovrić M (2007) In: Scholz F (ed) Square-wave voltammetry: theory and application. Heidelberg, Springer VerlagGoogle Scholar
  27. 27.
    Nicholson RS, Olmstead ML (1972) In: Mattson JS, Mark HB, MacDonald HC (eds) Electrochemistry: calculations, simulation and instrumentation, vol 2. New York, Marcel DekkerGoogle Scholar
  28. 28.
    Christie JH, Turner JA, Osteryoung RA (1977) Anal Chem 49:1899–1903CrossRefGoogle Scholar
  29. 29.
    O’Dea JJ, Wikiel K, Osteryoung J (1990) J Phys Chem 94:3628–3636CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Pabellón Argentina, Ciudad UniversitariaCórdobaArgentina

Personalised recommendations