Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 12, pp 3279–3286 | Cite as

Theoretical and experimental study of the catalytic cathodic stripping square-wave voltammetry of chromium species

  • Mariela Cuéllar
  • Sabrina N. Vettorelo
  • Patricia I. Ortiz
  • Fernando GarayEmail author
Original Paper

Abstract

The electrocatalytic mechanism of Cr(III) reduction in the presence of diethylenetriaminepentaacetic acid (DTPA) and nitrate ions is studied theoretically and experimentally by using stripping square-wave voltammetry (SWV). Experimental curves are in excellent agreement with theoretical profiles corresponding to a catalytic reaction of second kind. This type of mechanism is equivalent to a CE mechanism, where the chemical reaction produces the electroactive species. Accordingly, the reaction of Cr(III)–H2O–DTPA and \( {\mathrm{NO}}_3^{-} \) would produce the electroactive species Cr(III)–NO3–DTPA and this last species would release \( {\mathrm{NO}}_2^{-} \) to the solution during the electrochemical step. In this regard, the complex of Cr(III)–DTPA would work as the catalyzer that allows the reduction of \( {\mathrm{NO}}_3^{-} \) to \( {\mathrm{NO}}_2^{-} \). Furthermore, it was found that the electrochemical reaction is quite irreversible, with a constant of k s = 9.4 × 10−5 cm s−1, while the constant for the chemical step has been estimated to be k chem = 1.3 × 104 s−1. Considering that the equilibrium constant is K = 0.01, it is possible to estimate the kinetic constants of the chemical reaction as k 1 = 1 × 102 s−1 and k −1 = 1.29 × 104 s−1. These values of k 1 and k −1 indicate that the exchange of water molecules by nitrate is fast and that the equilibrium favors the complex with water. Also, a value for the formal potential E°’ ≈ −1.1 V was obtained. The model used for simulating experimental curves does not consider the adsorption of reactants yet. Accordingly, weak adsorption of reagents should be expected.

Keywords

Square-wave voltammetry Catalytic Mathematical modelling DTPA CE mechanism Cr speciation Catalysis of second type 

Notes

Acknowledgments

Financial support from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Fondo para la Investigación Científica y Tecnológica (FONCYT) and Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECyT-UNC) is gratefully acknowledged. M. C. and S. V. acknowledge CONICET for the fellowships granted.

References

  1. 1.
    Espada-Bellido E, Bi Z, van den Berg CMG (2013) Talanta 105:287–291CrossRefGoogle Scholar
  2. 2.
    Ouyang R, Zhang W, Zhou S, Xue ZL, Xu L, Gu Y, Miao Y (2013) Electrochim Acta 113:686–693CrossRefGoogle Scholar
  3. 3.
    Van den Berg CMG, Huang ZQ (1984) Anal Chem 56:2383–2386CrossRefGoogle Scholar
  4. 4.
    Boussemart M, Van den Berg CMG, Ghaddaf M (1992) Anal Chim Acta 262:103–115CrossRefGoogle Scholar
  5. 5.
    Biver M, Quentel F, Filella M (2015) Talanta 144:1007–1013CrossRefGoogle Scholar
  6. 6.
    Caprara S, Laglera LM, Monticelli D (2015) Anal Chem 87:6357–6363CrossRefGoogle Scholar
  7. 7.
    Vega M, Van den Berg CMG (1997) Anal Chem 69:874–881CrossRefGoogle Scholar
  8. 8.
    Laglera LM, Santos-Echeandía J, Caprara S, Monticelli D (2013) Anal Chem 85:2486–2492CrossRefGoogle Scholar
  9. 9.
    Mirčeski V, Bobrowski A, Zarebski J, Spasovski F (2010) Electrochim Acta 55:8696–8703CrossRefGoogle Scholar
  10. 10.
    Bobrowski A, Baś B, Dominik J, Niewiara E, Szalińska E, Vignati D, Zarebski J (2004) Talanta 63:1003–1012CrossRefGoogle Scholar
  11. 11.
    Li Y, Xue H (2001) Anal Chim Acta 448:121–134CrossRefGoogle Scholar
  12. 12.
    Golimowski J, Valenta P, Nürnberg HW (1985) Fresenius’ Z Anal Chem 322:315–322CrossRefGoogle Scholar
  13. 13.
    Scholz F, Draheim M, Henrion G (1990) Fresenius J Anal Chem 336:136–138CrossRefGoogle Scholar
  14. 14.
    Scholz F, Lange B, Pelzer DM (1990) Fresenius J Anal Chem 338:627–629CrossRefGoogle Scholar
  15. 15.
    Bucci R, Magri AL, Napoli A (1991) J Coord Chem 21:169–175CrossRefGoogle Scholar
  16. 16.
    Lovrić M, Komorsky-Lovrić Š, Bond A (1991) J Electroanal Chem 319:1–18CrossRefGoogle Scholar
  17. 17.
    Lovrić M (2013) J Chil Chem Soc 58:2191–2195Google Scholar
  18. 18.
    Garay F (2001) J Electroanal Chem 505:100–108CrossRefGoogle Scholar
  19. 19.
    Garay F, Solis VM (2001) J Electroanal Chem 505:109–117CrossRefGoogle Scholar
  20. 20.
    Garay F (2003) J Electroanal Chem 548:1–9CrossRefGoogle Scholar
  21. 21.
    Garay F (2003) J Electroanal Chem 548:11–18CrossRefGoogle Scholar
  22. 22.
    Vettorelo SN, Garay F (2016) J Solid State Elect. doi: 10.1007/s10008-016-3273-9
  23. 23.
    Zarebski J, Bobrowski A, Królicka PM (2009) Collect Czech Chem Commun 74:1715–1725CrossRefGoogle Scholar
  24. 24.
    Smith DE (1963) Anal Chem 35:602–609CrossRefGoogle Scholar
  25. 25.
    Garay F, Lovrić M (2002) J Electroanal Chem 518:91–102CrossRefGoogle Scholar
  26. 26.
    Mirčeski V, Komorsky-Lovrić S, Lovrić M (2007) In: Scholz F (ed) Square-wave voltammetry: theory and application. Heidelberg, Springer VerlagGoogle Scholar
  27. 27.
    Nicholson RS, Olmstead ML (1972) In: Mattson JS, Mark HB, MacDonald HC (eds) Electrochemistry: calculations, simulation and instrumentation, vol 2. New York, Marcel DekkerGoogle Scholar
  28. 28.
    Christie JH, Turner JA, Osteryoung RA (1977) Anal Chem 49:1899–1903CrossRefGoogle Scholar
  29. 29.
    O’Dea JJ, Wikiel K, Osteryoung J (1990) J Phys Chem 94:3628–3636CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Pabellón Argentina, Ciudad UniversitariaCórdobaArgentina

Personalised recommendations