Journal of Solid State Electrochemistry

, Volume 20, Issue 11, pp 3071–3081 | Cite as

Glassy carbon electrode modified with hemin and new melamine compounds for H2O2 amperometric detection

  • Aglaia Raluca Deac
  • Cristina Morar
  • Graziella Liana Turdean
  • Mircea Darabantu
  • Emese Gál
  • Attila Bende
  • Liana Maria Muresan
Original Paper


In an attempt to increase the stability and efficiency of hemin-modified electrodes, the present work reports the preparation of a new modified glassy carbon electrode obtained by immobilization of hemin (Hm) on the electrode surface together with a new N-substituted melamine (2,4,6-triamino-1,3,5-triazine) based G-2 dendrimer comprising p-aminophenol as peripheral unit (Den) or with one of its analogues, a melamine G-0 dimer (Dim). Basic structural features, able to determine intimate relationships between Hm and Dim (or Den) at room temperature in solid state, were evidenced with the use of vibrational analysis carried out by FT-IR. This method revealed contacts between Hm and Dim or Den respectively as H-bond interactions, proton-interchange, and π-π stacking interactions. The new modified electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy and tested for amperometric detection of H2O2. In this purpose, GC/Hm-Dim electrode exhibited better catalytic properties than GC/Hm-Den electrode, but lower stability.


Hemin-modified electrodes Dendritic melamines Cyclic voltammetry Electrochemical impedance spectroscopy Amperometric detection of H2O2 



The financial support from a grant provided by the Research Council Romania (Project PN-II-ID-PCE-2011-3-0128) is gratefully acknowledged. A.B. acknowledges the financial support from the Romanian National Authority for Scientific Research and Innovation (ANCSI) through the Core Program 2015.

Supplementary material

10008_2016_3298_MOESM1_ESM.doc (277 kb)
ESM 1 (DOC 5253 kb)
10008_2016_3298_MOESM2_ESM.doc (356 kb)
ESM 2 (DOC 5834 kb)
10008_2016_3298_MOESM3_ESM.doc (536 kb)
ESM 3 (DOC 10804 kb)
10008_2016_3298_MOESM4_ESM.doc (497 kb)
ESM 4 (DOC 12288 kb)
10008_2016_3298_MOESM5_ESM.doc (272 kb)
ESM 5 (DOC 4498 kb)
10008_2016_3298_MOESM6_ESM.doc (295 kb)
ESM 6 (DOC 5066 kb)
10008_2016_3298_MOESM7_ESM.doc (387 kb)
ESM 7 (DOC 5914 kb)
10008_2016_3298_MOESM8_ESM.doc (388 kb)
ESM 8 (DOC 6780 kb)
10008_2016_3298_MOESM9_ESM.doc (431 kb)
ESM 9 (DOC 2130 kb)


  1. 1.
    Chen J, Zhao L, Bai H, Shi G (2011) J Electroanal Chem 657:34–38CrossRefGoogle Scholar
  2. 2.
    Sosna MJ, Fapyane D, Ferapontova EE (2014) J Electroanal Chem 728:18–25CrossRefGoogle Scholar
  3. 3.
    Brusova Z, Magner E (2009) Bioelechem 76(1–2):63–69Google Scholar
  4. 4.
    Bruice TC (1991) Acc Chem Res 24:243–249CrossRefGoogle Scholar
  5. 5.
    Ni Y, Wang P, Song H, Lin X, Kokot S (2014) Anal Chim Acta 821:34–40CrossRefGoogle Scholar
  6. 6.
    Santos RM, Rodrigues MS, Laranjinha J, Barbosa RM (2013) Biosens Bioelectron 44:152–159CrossRefGoogle Scholar
  7. 7.
    Valentini F, Cristofanelli L, Carbone M, Palleschi G (2012) Electrochim Acta 63:37–46CrossRefGoogle Scholar
  8. 8.
    Song H, Ni Y, Kokot S (2013) Anal Chim Acta 788:24–31CrossRefGoogle Scholar
  9. 9.
    Wong A, Materon EM, Del Pilar Taboada Sotomayor M (2014) Electrochim Acta 146:830–837CrossRefGoogle Scholar
  10. 10.
    Zeng F, Zimmerman SC (1997) Chem Rev 97:1681–1712CrossRefGoogle Scholar
  11. 11.
    Balzani V, Ceroni P, Giansante C, Vicinelli V, Klarner FG, Verhaelen C, Vogtle F, Hahn U (2005) Angew Chem Int Ed 44:4574–4578CrossRefGoogle Scholar
  12. 12.
    Newkome GR, Woosley BD, He E, Moorefield CN, Guther R, Baker GR, Escamilla GH, Merrill J, Luftmann H (1996) Chem Commun 24:2737–2738CrossRefGoogle Scholar
  13. 13.
    Jockusch S, Turro NJ, Tomalia DA (1995) Macromolecules 28:7416–7418CrossRefGoogle Scholar
  14. 14.
    Alonso B, Moran M, Casado CM, Lobete F, Losada J, Cuadrado I (1995) Chem Mater 7:1440–1442CrossRefGoogle Scholar
  15. 15.
    Bustos Bustos E, Chapman TW, Rodriguez-Valadez F, Godinez LA (2006) Electroanal 18:2092–2098CrossRefGoogle Scholar
  16. 16.
    Lates V, Gligor D, Darabantu M, Muresan LM (2007) J Appl Electrochem 37:631–636CrossRefGoogle Scholar
  17. 17.
    Morar C, Turdean G, Bende A, Lameiras P, Antheaume C, Muresan LM, Darabantu M (2016) Manuscript under reviewGoogle Scholar
  18. 18.
    Weigend F, Ahlrichs R (2005) Phys Chem 7:3297–3305Google Scholar
  19. 19.
    Ghiviriga I, Oniciu DC (2002) Chem Commun 22:2718–2719CrossRefGoogle Scholar
  20. 20.
    Drakenberg T, Forsen S (1971) Chem Commun 21:1404–1405CrossRefGoogle Scholar
  21. 21.
    Mirvish SS, Gannett P, Babcook DM, Williamson D, Chen SC, Weisenburger DD (1991) J Agric Food Chem 39:1205–1210CrossRefGoogle Scholar
  22. 22.
    Willner I, Rosengaus J, Eichen YJ (1993) Phys Org Chem 6:29–43CrossRefGoogle Scholar
  23. 23.
    Katritzky AR, Ghiviriga I, Oniciu DC, Barkock A (1995) J Chem Soc Perkin Trans 2(4):785–792CrossRefGoogle Scholar
  24. 24.
    Katritzky AR, Ghiviriga I, Steel PG, Oniciu DC (1996) J Chem Soc Perkin Trans 2(3):443–447CrossRefGoogle Scholar
  25. 25.
    Eliel EL, Wilen SH (1994) Stereochemistry of the organic compounds. John Wiley & Sons, New York, pp 642–1191Google Scholar
  26. 26.
    Parker FS (1971) Biology and medicine: applications of infrared spectroscopy in biochemistry. Plenum Press, New York, p 351CrossRefGoogle Scholar
  27. 27.
    Tom RT, Pradeep T (2005) Langmuir 21:11896–11902CrossRefGoogle Scholar
  28. 28.
    Wood BR, Langford SJ, Cooke BM, Lim J, Glenister KK, Duriska M, Unthank JK, McNaughton D (2004) J Am Chem Soc 126:9233–9239CrossRefGoogle Scholar
  29. 29.
    Hasinoff BB, Dunford HB, Horne DG (1969) Can J Chem 47:3225–3232CrossRefGoogle Scholar
  30. 30.
    Wu DG, Cahen D, Graf P, Naaman R, Nitzan A, Shvarts D (2001) Chem Eur J 7:1743–1749CrossRefGoogle Scholar
  31. 31.
    Schappacher M, Deffieux A (2004) Polymer 45:4633–4639CrossRefGoogle Scholar
  32. 32.
    Wang Q, Yang Z, Zhang X, Xiao X, Chang CK, Xu B (2007) Angew Chem Int Ed 46:4285–4289CrossRefGoogle Scholar
  33. 33.
    Luo F, Lin Y, Zheng L, Lin X, Chi Y (2015) Appl Mater Interfaces 7:11322–11329CrossRefGoogle Scholar
  34. 34.
    Xie S, Ye J, Yuan Y, Chai Y, Yuan R (2015) Nanoscale 7:18232–18238CrossRefGoogle Scholar
  35. 35.
    Hunter AA, Sanders JKM (1990) Chem Rew 112:5525–5534Google Scholar
  36. 36.
    Toader AM, Volanschi E, Lazarescu MF, Lazarescu V (2010) Electrochim Acta 56:863–866CrossRefGoogle Scholar
  37. 37.
    Laviron E (1979) J Electroanal Chem 101:19–28CrossRefGoogle Scholar
  38. 38.
    Ye JS, Wen Y, Zhang W, Cui HF, Gan LM, Xu GQ, Sheu FS (2004) J Electroanal Chem 562:241–246CrossRefGoogle Scholar
  39. 39.
    Ma Q, Ai S, Yin H, Chen Q, Tang T (2010) Electrochim Acta 55:687–6694Google Scholar
  40. 40.
    Huang W, Hao Q, Lei W, Wu L, Xia X (2014) Mater Res Express. doi: 10.1088/2053-1591/1/4/045601 Google Scholar
  41. 41.
    Zuo G, Liu X, Yang J, Li X, Lu X (2007) J Electroanal Chem 605:81–88CrossRefGoogle Scholar
  42. 42.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55:6218–6227CrossRefGoogle Scholar
  43. 43.
    Chen G, Sun H, Hou S (2016) Anal Biochem 502:43–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aglaia Raluca Deac
    • 1
  • Cristina Morar
    • 2
  • Graziella Liana Turdean
    • 1
  • Mircea Darabantu
    • 2
  • Emese Gál
    • 3
  • Attila Bende
    • 4
  • Liana Maria Muresan
    • 1
  1. 1.Department of Chemical Engineering“Babes-Bolyai” UniversityCluj-NapocaRomania
  2. 2.Department of Chemistry“Babes-Bolyai” UniversityCluj-NapocaRomania
  3. 3.Department of Chemistry and Chemical Engineering, Hungarian Line of Study“Babes-Bolyai” UniversityCluj-NapocaRomania
  4. 4.Molecular and Biomolecular Physics DepartmentNational Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-Napoca 5Romania

Personalised recommendations