Journal of Solid State Electrochemistry

, Volume 20, Issue 10, pp 2759–2764 | Cite as

Li+ ionic conduction properties on NaI doped with a small amount of LiBH4

Original Paper


In the present work, Li+ conductor is synthesized via small doping of LiBH4 into “Li-free” compound (or solid solvent), NaI. The formation of solid solution between NaI and LiBH4 is confirmed by XRD measurement, and the solubility limit of LiBH4 exists between 6 to 13 mol%. The value of σ for 15NaI·LiBH4 (6 mol% LiBH4) showed 1.7 × 10−6 S/cm at room temperature, which is comparable to that for LiI. From the plot of log σT vs. 1000/T, an activation energy for Li+ conduction in NaI is estimated to be 0.68 and 0.32 eV for heating and cooling cycle, respectively. The results of AC impedance measurement and DC polarization test indicate that Li+ plays a major role in ionic conduction in NaI regardless of the slight molar fraction of Li+. The present results suggest that the expansion in the material choice for solid solvent and other alkali halides can also work as a base material for Li+ ion conductors.


Solid electrolyte Lithium-ion conductor Li-free compounds All-solid-state battery Solid solution Electrical conductivity LiBH4 



This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology, through a Grant-in-Aid for Scientific Research (C), 2015, No. 15K06463.

Supplementary material

10008_2016_3287_MOESM1_ESM.pdf (331 kb)
ESM 1 (PDF 331 kb)


  1. 1.
    Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn JR (1997) Synthesis and Electrochemistry of LiNixMn2 − x O 4. J Electrochem Soc 144:205–213Google Scholar
  2. 2.
    Knauth P (2009) Inorganic solid Li ion conductors: An overview. Solid State Ionics 180:911–916CrossRefGoogle Scholar
  3. 3.
    Quartarone Q, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540CrossRefGoogle Scholar
  4. 4.
    Alpen UV, Rabenau A, Talat GH (1977) Ionic conductivity in Li3N single crystals. Appl Phys Lett 30:621–623CrossRefGoogle Scholar
  5. 5.
    Inaguma Y, Liquan C, Itho M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693CrossRefGoogle Scholar
  6. 6.
    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1989) Ionic Conductivity of the Lithium Titanium Phosphate (Li1 + XMXTi2 − X (PO4)3, M = Al, Sc, Y, and La) Systems. J Electrochem Soc 136:590–591Google Scholar
  7. 7.
    Thangadurai V, Kaack H, Weppner WJF (2003) Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86:437–440CrossRefGoogle Scholar
  8. 8.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) New, Highly Ion-Conductive Crystals Precipitated from Li2S–P2S5 Glasses. Adv Mater 17:918–921CrossRefGoogle Scholar
  9. 9.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2010) A lithium superionic conductor. Nat Mater 10:682–686CrossRefGoogle Scholar
  10. 10.
    Matsuo M, Nakamori Y, Orimo S, Maekawa H, Takamura H (2007) Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl Phys Lett 91:224103CrossRefGoogle Scholar
  11. 11.
    Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, Orimo S (2009) Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. J Am Chem Soc 131:894–895CrossRefGoogle Scholar
  12. 12.
    Miyazaki R, Karahashi T, Kumatani N, Noda Y, Ando M, Takamura H, Matsuo M, Orimo S, Maekawa H (2011) Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4. Solid State Ionics 192:143–147CrossRefGoogle Scholar
  13. 13.
    Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 182:116–119CrossRefGoogle Scholar
  14. 14.
    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1991) Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics 47:257–264CrossRefGoogle Scholar
  15. 15.
    Miyazaki R, Maekawa H, Takamura H (2014) Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties. APL Mater 2:056109CrossRefGoogle Scholar
  16. 16.
    Tamura S, Mori A, Imanaka N (2004) Li+ ion conduction in (Gd, La)2O3–LiNO3 system. Solid State Ionics 175:467–470CrossRefGoogle Scholar
  17. 17.
    Tamura S, Mori A, Imanaka N (2006) Li+ ion conducting properties in (Gd,La)2O3–LiNO3–KNO3 solid. Solid State Ionics 177:2727–2730CrossRefGoogle Scholar
  18. 18.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  19. 19.
    Schlaikjer CR, Liang CC (1971) Ionic Conduction in Calcium Doped Polycrystalline Lithium Iodide. J Electrochem Soc 118:1447–1450CrossRefGoogle Scholar
  20. 20.
    Frederick S (1950) Influence of Plastic Flow on the Electrical and Photographic Properties of the Alkali Halide Crystals. Phys Rev 80:239–243CrossRefGoogle Scholar
  21. 21.
    Jackson BJH, Young DA (1969) Ionic conduction in pure and doped single-crystalline lithium iodide. J Phys Chem Solids 30:1973–1976CrossRefGoogle Scholar
  22. 22.
    Kummer JT (1972) β-Alumina electrolytes. Prog in Solid State Chem 7:141–175CrossRefGoogle Scholar
  23. 23.
    Fancher DL, Barsch GR (1969) Lattice theory of alkali halide solid solutions-I. Heat of formation. J Phys Chem Solids 30:2503–2516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physical Engineering and Science, Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations