Journal of Solid State Electrochemistry

, Volume 20, Issue 8, pp 2197–2205 | Cite as

A high mass loading electrode based on ultrathin Co3S4 nanosheets for high performance supercapacitor

  • Binbin Xin
  • Yongqing Zhao
  • Cailing Xu
Original Paper


There is a growing need for the electrode with high mass loading of active materials, where both high energy and high power densities are required, in current and near-future applications of supercapacitor. Here, an ultrathin Co3S4 nanosheet decorated electrode (denoted as Co3S4/NF) with mass loading of 6 mg cm−2 is successfully fabricated by using highly dispersive Co3O4 nanowires on Ni foam (NF) as template. The nanosheets contained lots of about 3∼5 nm micropores benefiting for the electrochemical reaction and assembled into a three-dimensional, honeycomb-like network with 0.5∼1 μm mesopore structure for promoting specific surface area of electrode. The improved electrochemical performance was achieved, including an excellent cycliability of 10,000 cycles at 10 A g−1 and large specific capacitances of 2415 and 1152 F g−1 at 1 and 20 A g−1, respectively. Impressively, the asymmetric supercapacitor assembled with the activated carbon (AC) and Co3S4/NF electrode exhibits a high energy density of 79 Wh kg−1 at a power density of 151 W kg−1, a high power density of 3000 W kg−1 at energy density of 30 Wh kg−1 and 73 % retention of the initial capacitance after 10,000 charge-discharge cycles at 2 A g−1. More importantly, the formation process of the ultrathin Co3S4 nanosheets upon reaction time is investigated, which is benefited from the gradual infiltration of sulfide ions and the template function of ultrafine Co3O4 nanowires in the anion-exchange reaction.

Graphical abstract

The ultrathin 2D Co3S4 nanosheets fabricated on 3D Ni foam and the formation process of the ultrathin Co3S4 nanosheets upon reaction times has been investigated. At the same time, the Co3S4/NF electrode displays an outstanding specific capacitance of 2420 F g−1 at 1 A g−1 with high mass loading of 6 mg cm−2.


Supercapacitors High mass loading Ultrathin nanosheets Co3S4 Superior cycling stability 



This work was supported by grants from the Natural Science Foundation of China (NNSFC no. 21503102), the Fundamental Research Funds for the Central University (lzujbky-2014-189), the Science and Technology Program of Gansu Province of China (145RJZA176), and the National College Students’ Innovative Entrepreneurial Training Program of Lanzhou University (No. 201510730096).

Supplementary material

10008_2016_3225_MOESM1_ESM.doc (6.9 mb)
ESM 1 (DOC 7067 kb)


  1. 1.
    Liu YW, Xiao C, Lyu MJ, Lin Y, Cai WZ, Huang PC, Tong W, Zou YM, Xie Y (2015) Angew Chem Int Edit 54:11231–11235CrossRefGoogle Scholar
  2. 2.
    Xu MY, Niu HL, Huang JJ, Song JM, Mao CJ, Zhang SY, Zhu CF, Chen CL (2015) Appl Surf Sci 351:374–381CrossRefGoogle Scholar
  3. 3.
    Wang HG, Li ZP, Li GH, Peng F, Yu H (2015) Catal Today 245:74–78CrossRefGoogle Scholar
  4. 4.
    Mahmood N, Zhang CZ, Jiang J, Liu F, Hou YL (2013) Chem Eur J 19:5183–5190CrossRefGoogle Scholar
  5. 5.
    Feng YJ, He T, Alonso N (2008) Chem Mater 20:26–28CrossRefGoogle Scholar
  6. 6.
    Bao SJ, Li YB, Li Chang M, Bao QL, Lu Q, Guo J (2008) Cryst Growth Des 8:3745–3749CrossRefGoogle Scholar
  7. 7.
    Sennu P, Christy M, Aravindan V, Lee YG, Nahm KS, Lee YS (2015) Chem Mater 27:5726–5735CrossRefGoogle Scholar
  8. 8.
    Du YC, Zhu XS, Zhou XS, Hu LY, Dai ZH, Bao JC (2015) J Mater Chem A 3:6787–6791CrossRefGoogle Scholar
  9. 9.
    Luo Q, Gu YC, Li JB, Wang N, Lin H (2016) J Power Sources 312:93–100CrossRefGoogle Scholar
  10. 10.
    Hu ZL, Xia K, Zhang J, Hu ZY, Zhu YJ (2014) RSC Adv 4:42917–42923CrossRefGoogle Scholar
  11. 11.
    Zhang QF, Xu CM, Lu BG (2014) Electrochim Acta 132:180–185CrossRefGoogle Scholar
  12. 12.
    Tao F, Zhao YQ, Zhang GQ, Li HL (2007) Electrochem Commun 9:1282–1287CrossRefGoogle Scholar
  13. 13.
    Ghosh D, Das CK (2015) ACS Appl Mater Inter 7:1122–1131CrossRefGoogle Scholar
  14. 14.
    Hua H, Liu SJ, Chen ZY, Bao RQ, Shi YY, Hou LR, Pang G, Hui KN, Zhang XG, Yuan CZ (2016) Sci Rep-UK 6:20973CrossRefGoogle Scholar
  15. 15.
    Liu B, Kong DZ, Zhang J, Wang Y, Chen TP, Cheng CW, Yang HY (2016) J Mater Chem A 4:3287–3296CrossRefGoogle Scholar
  16. 16.
    Xu B, Pan L, Zhu QY (2016) J Mater Eng Perform 25:1117–1121CrossRefGoogle Scholar
  17. 17.
    Chen Q, Li HG, Cai CY, Yang S, Huang K, Wei XL, Zhong JX (2013) RSC Adv 3:22922–22926CrossRefGoogle Scholar
  18. 18.
    Wang QH, Jiao LF, Du HM, Si YC, Wang YJ, Yuan HT (2012) J Mater Chem 22:21387–23191CrossRefGoogle Scholar
  19. 19.
    Chao DL, Xia XH, Liu JL, Fan ZX, Ng CF, Lin JY, Zhang H, Shen ZX, Fan HJ (2014) Adv Mater 26:5794–5800CrossRefGoogle Scholar
  20. 20.
    Hu ZM, Xiao X, Chen C, Li TQ, Huang L, Zhang CF, Su J, Miao L, Jiang JJ, Zhang YR, Zhou J (2015) Nano Energy 11:226–234CrossRefGoogle Scholar
  21. 21.
    Zhang X, Zhao YQ, Xu CL (2014) Nanoscale 6:3638–3646CrossRefGoogle Scholar
  22. 22.
    Zhao J, Zou YC, Zou XX, Bai TY, Liu YP, Gao RQ, Wang DJ, Li GD (2014) Nanoscale 6:7255–7262CrossRefGoogle Scholar
  23. 23.
    Ning FY, Shao MF, Zhang CL, Xu SM, Wei M, Duan X (2014) Nano Energy 7:134–142CrossRefGoogle Scholar
  24. 24.
    Abouali S, Garakani MA, Zhang B, Xu ZL, Heidari EK, Huang JQ, Huang J, Kim JK (2015) ACS Appl Mater Inter 7:13503–13511CrossRefGoogle Scholar
  25. 25.
    Wang J, Gao B, Long ZB (2014) Li Rui, Shen JP, Qiaoa ZQ, Yang GH, Nie FD. RSC Adv 4:30573–30578CrossRefGoogle Scholar
  26. 26.
    Xiao YL, Lei Y, Zheng BZ, Gu L, Wang YY, Xiao D (2015) RSC Adv 5:21604–21613CrossRefGoogle Scholar
  27. 27.
    Peng Z, Jia DS, Al-Enizi AM, Elzatahry AA, Zheng G (2015) From Water oxidation to reduction: homologous Ni–Co based nanowires as complementary Water splitting Electrocatalysts. Adv. Energy Mater. DOI. doi: 10.1002/aenm.201402031 Google Scholar
  28. 28.
    Shen LF, Wang J, Xu GY, Li HS, Dou H, Zhang XG (2015) NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater DOI. doi: 10.1002/aenm.201400977 Google Scholar
  29. 29.
    Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  30. 30.
    Xu J, Wang QF, Wang XW, Xiang QY, Liang B, Chen D, Shen GZ (2013) ACS Nano 7:5453–5462CrossRefGoogle Scholar
  31. 31.
    Peng SJ, Li LL, Tan HT, Cai R, Shi WH, Li CC, Mhaisalkar SG, Srinivasan M (2014) Ramakrishna Seeram, Yan QY. Adv Funct Mater 24:2155–2162CrossRefGoogle Scholar
  32. 32.
    Wei C, Chuan X, Alshareef HN (2014) ACS Nano 8:9531–9541CrossRefGoogle Scholar
  33. 33.
    Pu J, Wang ZH, Wu KL, Yu N, Sheng E (2014) Phys Chem Chem Phys 16:785–791CrossRefGoogle Scholar
  34. 34.
    Luo FL, Li J, Yuan HY, Xiao D (2014) Electrochim Acta 123:183–189CrossRefGoogle Scholar
  35. 35.
    Xu L, Lu Y (2015) RSC Adv 5:67518–67523CrossRefGoogle Scholar
  36. 36.
    Zhao WW, Zhang C, Geng FY, Zhuo SF, Zhang B (2014) ACS Nano 8:10909–10919CrossRefGoogle Scholar
  37. 37.
    Liu Q, Zhang JY (2013) CrystEngComm 15:5087–5092CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations