Journal of Solid State Electrochemistry

, Volume 20, Issue 8, pp 2191–2196 | Cite as

Electrode material dependent p- or n-like thermoelectric behavior of single electrochemically synthesized poly(2,2′–bithiophene) layer—application to thin film thermoelectric generator

  • Jonas Kublitski
  • Ana C. B. Tavares
  • José P. M. Serbena
  • Yuchun Liu
  • Bin Hu
  • Ivo A. Hümmelgen
Original Paper


We prepared poly(2,2′–bithiophene) (PBT) on top of Au and indium-tin oxide (ITO) bottom electrodes and determined the Seebeck coefficient in devices with Al top electrode. Negative Seebeck coefficient was observed in ITO/PBT/Al devices, whereas Au/PBT/Al devices showed positive Seebeck coefficient. This difference allowed the construction of a complete thermoelectric thin film generator with top electrode of Al and bottom electrode of ITO and Au (each one at half of the electrode area) in a single organic layer deposition step. The thermoelectric generator achieves ca. 800 μV K−1 at room temperature, which is a very high value for conjugated polymer-based devices.


Polybithiophene Organic thermogenerator Seebeck coefficient 



The authors thank the financial support from CAPES and CNPQ. IAH would like to thank Prof. Frank Karasz for the issue related motivation and discussion over the years and Prof. Miguel Abbate for helpful discussions regarding XPS results. Authors also thank the Analysis and Testing Center of Huazhong University of Science and Technology for XPS measurements.


  1. 1.
    Terry T (2000) Recent trends in thermoelectric materials research part two. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Bell LE (2008) Science 321:1457–1461CrossRefGoogle Scholar
  3. 3.
    Ashkroft NW, Mermin ND (1987) Solid state physics. CBS Publishing Asia, Saunders CollegeGoogle Scholar
  4. 4.
    Bo Y, Liu W, Chen S, Wang H, Wang H, Chen G, Ren Z (2012) Nano Energy 1:472–478CrossRefGoogle Scholar
  5. 5.
    Yang B, Herwin A, Thanh TN (2008) HVAC&R Res 14:635–653CrossRefGoogle Scholar
  6. 6.
    Zhang Q, Sun Y, Xu W, Zhu D (2014) Adv Mater 26:6829–6851CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Sun Y, Xu W, Zhu D (2012) Energy Environ Sci 5:9639–9644CrossRefGoogle Scholar
  8. 8.
    Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D (2012) Adv Mater 24:932–937CrossRefGoogle Scholar
  9. 9.
    Toshima N (2002) Macromol Symp 186:81–86CrossRefGoogle Scholar
  10. 10.
    Mateeva N, Niculescu H, Schlenoff J, Testardi LR (1998) J Appl Phys 83:3111–3117CrossRefGoogle Scholar
  11. 11.
    Feng-Xing J, Jing-Kun X, Bao-Yang L, Yu X, Rong-Jin H, Lai-Feng L (2008) Chinese Phys Lett 25:2202–2205CrossRefGoogle Scholar
  12. 12.
    Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X (2011) Nat Mater10:429–433Google Scholar
  13. 13.
    Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2010) ACS Nano 4:513–523CrossRefGoogle Scholar
  14. 14.
    Hewitt CA, Kaiser AB, Roth S, Craps M, Czerw R, Carroll DL (2012) NanoLett12:1307–1310Google Scholar
  15. 15.
    He M, Qiu F, Lin Z (2013) Energy Environ Sci 6:1352–1361CrossRefGoogle Scholar
  16. 16.
    Yan L, Shao M, Wang H, Dudis D, Urbas A, Hu B (2011) Adv Mater 23:4120–4124CrossRefGoogle Scholar
  17. 17.
    Bradshaw G, Hughes AJ (1976) Thin Solid Films 33:L5–L8CrossRefGoogle Scholar
  18. 18.
    Goss CA, Charych DH, Majda M (1991) Anal Chem 63:85–88CrossRefGoogle Scholar
  19. 19.
    Leguenza EL, Patyk RL, Mello RM, Micaroni L, Koehler M, Hümmelgen IA (2007) J Solid State Electrochem 11:577–580CrossRefGoogle Scholar
  20. 20.
    Zhou Y, Yang D, Li L, Li F, Li JF (2014) Rev Sci Instrum 85:054904–054909CrossRefGoogle Scholar
  21. 21.
    Burns GW, Scroger MG, Strouse GF, Croarkin MC, Guthrie WF (1993) NASA STI/Recon Technical Report N 93:31214Google Scholar
  22. 22.
    Tsumura A, Koezuka H, Ando T (1986) Appl Phys Lett 49:1210–1212CrossRefGoogle Scholar
  23. 23.
    Tavares ACB, Serbena JPM, Hümmelgen IA, Meruvia MS (2014) Org Electron 15:738–742CrossRefGoogle Scholar
  24. 24.
    Hiraishi K, Masuhara A, Nakanishi H, Oikawa H, Shinohara Y (2009) Jpn J Appl Phys 48:071501–071504CrossRefGoogle Scholar
  25. 25.
    Souza JFP, Kowalski EL, Akcelrud LC, Serbena JPM (2014) J Solid State Electrochem 18:3491–3497CrossRefGoogle Scholar
  26. 26.
    Lampert MA, Mark P (1970) Current Injection in Solids, Academic Press, New York27 27. Ferrari EF, Koehler M, Hümmelgen IA (1997) Phys Rev B 55:9590–9597Google Scholar
  27. 27.
    Guerrero A, Boix PP, Marchesi LF, Ripollis-Sanchez T, Pereira EC, Garcia-Belmonte G (2012) Sol Energ Mat Sol C 100:185–191CrossRefGoogle Scholar
  28. 28.
    Lu N, Li L, Banerjee W, Liu M (2016) Org Electron 29:27–32CrossRefGoogle Scholar
  29. 29.
    Park YW (1991) Synth Met 45:173–182CrossRefGoogle Scholar
  30. 30.
    Wang L, Jia X, Wang D, Zhu G, Li J (2013) Synth Met 181:79–85CrossRefGoogle Scholar
  31. 31.
    Masubuchi S, Kazama S, Mizoguchi K, Honda M, Kume K, Matsushita R, Matsuyama T (1993) Synth Met 57:4962–4967CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jonas Kublitski
    • 1
  • Ana C. B. Tavares
    • 1
  • José P. M. Serbena
    • 1
  • Yuchun Liu
    • 2
  • Bin Hu
    • 2
    • 3
  • Ivo A. Hümmelgen
    • 1
  1. 1.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil
  2. 2.Wu Han National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWu HanChina
  3. 3.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations