Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 7, pp 2045–2053 | Cite as

Preparation of MnO2 and MnO2/carbon nanotubes nanocomposites with improved electrochemical performance for lithium ion batteries

  • Sisi Luo
  • Shan Xu
  • Yuhong Zhang
  • Jiyan Liu
  • Shiquan Wang
  • Peixin He
Original Paper

Abstract

Manganese dioxide (MnO2) nanomaterials and manganese dioxide/carbon nanotubes (MnO2/CNTs) nanocomposites were prepared by chemical precipitation and hydrothermal methods with Mn2+ and MnO4 as reactants, respectively. The crystalline structure and morphology of all samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Different crystalline structures and morphologies of MnO2 were prepared by different synthesis methods. Thermogravimetric analysis (TGA) and Elemental analysis (EA) were used to measure the thermal stability and carbon content of MnO2/CNTs nanocomposites. Charge-discharge performance, cyclic voltammetry (CV), large-rate capability performances, and electrochemical impedance spectroscopy (EIS) of the samples were measured as the cathode active materials for lithium ion batteries (LIBs). The synthetic methods and the addition of CNTs have much influence on the electrochemical performance of the products. The δ-MnO2 and δ-MnO2/CNTs prepared by chemical precipitation depict the lower reversible capacities at a current density of 1 C (308 mA g−1). The γ-MnO2 and γ-MnO2/CNTs nanocomposites prepared by hydrothermal method exhibit higher initial capacities of 168 and 254 mAh g−1 and reversible capacities of 85 and 150 mAh g−1, respectively. An enhanced cycling stability for 200 cycles is also achieved. The results show that the addition of CNTs into material can improve the material property at a certain extent.

Keywords

MnO2 Carbon nanotube Nanocomposites Lithium ion battery 

Notes

Acknowledgments

This work was financially supported by the opening project of key laboratory of optoelectronic chemical material and devices (Jianghan University), Ministry of Education (JDGD-201508) and State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology (GCTKF2014013).

References

  1. 1.
    Zhang QB, Wang JX, Dong JC, Ding F, Li XH, Zhang B, Yang SH, Zhang KL (2015) Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with Superior lithium storage properties. Nano Energy 13:77–91CrossRefGoogle Scholar
  2. 2.
    Wang JX, Zhang QB, Li XH, Zhang B, Mai LQ, Zhang KL (2015) Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 13:437–446CrossRefGoogle Scholar
  3. 3.
    Wang JX, Zhang QB, Li XH, Xu DG, Wang ZX, Guo HJ, Zhang KL (2014) Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6:19–26CrossRefGoogle Scholar
  4. 4.
    Li T, Li XH, Wang ZX, Guo HJ, Li Y (2015) A novel NiCo2O4 anode for lithium-ion batteries. J Mater Chem A 3:11970–11975CrossRefGoogle Scholar
  5. 5.
    Lu X, Zheng Y, Zhang Y, Qiu H, Zou H (2015) Low-temperature selective catalytic reduction of NO over carbon nanotubes supported MnO2 fabricated by co-precipitation method. Micro Nano Lett 10:666–669CrossRefGoogle Scholar
  6. 6.
    Wang C, Zhai Y, Wang X, Zeng M (2014) Preparation and characterization of lithium λ-MnO2 ion-sieves. Front Chem Sci Eng 8:471–477CrossRefGoogle Scholar
  7. 7.
    Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB (2008) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater 20:452–456CrossRefGoogle Scholar
  8. 8.
    Norouzi P, Faridbod F, Nasli-Esfahani E, Larijani B, Ganjali MR (2010) Cholesterol biosensor based on MWCNTs-MnO2 nanoparticles using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1008–1017Google Scholar
  9. 9.
    Li B, Rong G, Xie Y, Huang L, Feng C (2006) Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries Inorg. Chemistry 45:6404–6410Google Scholar
  10. 10.
    Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45:2038–2044CrossRefGoogle Scholar
  11. 11.
    Xia H, Lai MO, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20:6896–6902CrossRefGoogle Scholar
  12. 12.
    Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of Graphene-MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2:1855–1860CrossRefGoogle Scholar
  13. 13.
    Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng HL, Higgins RA, Cui Y (2008) Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952CrossRefGoogle Scholar
  14. 14.
    Reddy RN, Reddy RG (2004) Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J Power Sources 132:315–320CrossRefGoogle Scholar
  15. 15.
    Brousse T, Toupin M, Dugas R, Athouel L, Crosnier O, Belanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171–A2180CrossRefGoogle Scholar
  16. 16.
    Wang GX, Zhang BL, Yu ZL, Qu MZ (2005) Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ionics 176:1169–1174CrossRefGoogle Scholar
  17. 17.
    Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudo capacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147CrossRefGoogle Scholar
  18. 18.
    Wang X, Li Y (2002) Rational synthesis of α-MnO2 single-crystal nanorods. Chem Commun 7:764–765CrossRefGoogle Scholar
  19. 19.
    Zheng D, Sun S, Fan W, Yu H, Fan C, Cao G, Yin Z, Song X (2005) One-step preparation of single-crystalline β-MnO2 nanotubes. J Phys Chem B 109:16439–16443CrossRefGoogle Scholar
  20. 20.
    Gao T, Fjellvåg H, Norby P (2009) Structural and morphological evolution of β-MnO2 nanorods during hydrothermal synthesis. Nanotechnology 20:055610CrossRefGoogle Scholar
  21. 21.
    Zhang X, Chang X, Chen N, Wang K, Kang L, Liu Z (2012) Synthesis and capacitive property of δ-MnO2 with large surface area. J Mater Sci 47:999–1003CrossRefGoogle Scholar
  22. 22.
    Wang N, Cao X, He L, Zhang W, Guo L, Chen C, Wang R, Yang S (2008) One-pot synthesis of highly crystallined λ-MnO2 nanodisks assembled from nanoparticles: morphology evolutions and phase transitions. J Phys Chem C 112:365–369CrossRefGoogle Scholar
  23. 23.
    Lia G, Jiang L, Pang H, Peng H (2007) Synthesis of γ-MnO2 single-crystalline nanobelts. Mater Lett 61:3319–3322CrossRefGoogle Scholar
  24. 24.
    Xu MW, Zhao DD, Bao SJ, Li HL (2007) Mesoporous amorphous MnO2 as electrode material for supercapacitor. J Solid State Electrochem 11:1101–1107CrossRefGoogle Scholar
  25. 25.
    Xu JJ, Kinser AJ, Owens BB, Smyrl WH (1998) Amorphous manganese dioxide: a high capacity lithium intercalation host 1:1–3Google Scholar
  26. 26.
    Zhang QW, Zhong JS, Huang XK, Huang HN, Yang Y (2005) Preparation and properties of δ-MnO2. Chin J Appl Chem 22:908–911Google Scholar
  27. 27.
    Zeng JH, Wang YF, Yang Y, Zhang J (2010) Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries. J Mater Chem 20:10915–10918CrossRefGoogle Scholar
  28. 28.
    Ariga K, Yamauchi Y, Rydzek G, Ji Q, Yonamine Y, Wu KCW, Hill JP (2014) Layer-by-layer Nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43:36–68CrossRefGoogle Scholar
  29. 29.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  30. 30.
    Huang X, Pan C, Huang X (2007) Preparation and characterization of γ-MnO2/CNTs nanocomposite. Mater Lett 61:934–936CrossRefGoogle Scholar
  31. 31.
    Zou MM, Ai DJ, Liu KY (2011) Template synthesis of MnO2/CNT nanocomposite and its application in rechargeable lithium batteries. Trans Nonferrous Metals Soc China 21:2010–2014CrossRefGoogle Scholar
  32. 32.
    Wang W, Yang Y, Yang SJ, Guo ZP, Feng CQ, Tang XC (2015) Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application. Electrochim Acta 155:297–304CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sisi Luo
    • 1
    • 2
  • Shan Xu
    • 1
  • Yuhong Zhang
    • 1
    • 3
  • Jiyan Liu
    • 2
  • Shiquan Wang
    • 1
  • Peixin He
    • 1
  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical EngineeringHubei UniversityWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Optoelectronic Chemical Material and Devices, Ministry of EducationJianghan UniversityWuhanPeople’s Republic of China
  3. 3.Wuhan Haocheng Battery Technology Co. Ltd.WuhanPeople’s Republic of China

Personalised recommendations