Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 11, pp 3107–3114 | Cite as

Electrochemical dissolution of aluminium in electrocoagulation experiments

  • Éva Fekete
  • Béla Lengyel
  • Tamás Cserfalvi
  • Tamás PajkossyEmail author
Original Paper

Abstract

Six experiments are presented to highlight important features of aluminium dissolution when used in electrocoagulation procedure employed to remove oily contaminations from water. First, using a common oil-in-water emulsion: diluted milk, we show that the electrochemically generated coagulant ions are active only in the first few seconds following their generation—hence, the electrocoagulation cells’ construction should promote the mixing of the nascent Al colloid with the water phase. For this reason, the use of the narrow-gap cells is suggested. Second, in experiments with Al-Al electrode pairs and dilute, neutral, unbuffered, aqueous solutions we (i) estimate the maximum amount of Al dissolution on the cathode and (ii) show how the rate of Al dissolution changes with frequency if the cell voltage polarity is alternating.

Keywords

Aluminium Dissolution Coagulation Colloids Water cleaning Specific charge 

Notes

Acknowledgments

Financial support of the National Research, Technology and Innovation Office of the Hungarian government through projects KMR_12-1-2012-0386 and OTKA-K-112034 is acknowledged.

References

  1. 1.
    Everett DH (1988) Basic principles of colloid science. The Royal Society of Chemistry, London, p. ch.9Google Scholar
  2. 2.
    Abrantes LM (2012) In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical Dictionary, 2nd edn. Springer, Heidelberg, p. 294Google Scholar
  3. 3.
    Mollah MYA, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)—science and applications. J Hazard Mater 84:29–41CrossRefGoogle Scholar
  4. 4.
    Vepsäläinen M (2012) Electrocoagulation in the treatment of industrial waters and wastewaters. Thesis, VTT Technical Research Centre of Finland, Espoo, FinlandGoogle Scholar
  5. 5.
    Sahu O, Mazumdar B, Chaudhari PK (2014) Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res Int 21:2397–2413CrossRefGoogle Scholar
  6. 6.
    Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90:1663–1679CrossRefGoogle Scholar
  7. 7.
    Duana J, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interf Sci 100–102:475–502CrossRefGoogle Scholar
  8. 8.
    Canizares P, Martinez F, Jimenez C, Saez C, Rodrigo MA (2008) Coagulation and electrocoagulation of oil-in-water emulsions. J Hazard Mater 151:44–51CrossRefGoogle Scholar
  9. 9.
    Water quality – Determination of the chemical oxygen demand, ISO-6060: 1989Google Scholar
  10. 10.
    Bensadok K, Benammar S, Lapicque F, Nezzal G (2008) Electrocoagulation of cutting oil emulsions using aluminium plate electrodes. J Hazard Mater 152:423–430CrossRefGoogle Scholar
  11. 11.
    Black AP, Buswell AM, Eidsness FA, Black AL (1957) Review of the Jar Test, Journal (American Water Works Association) 49: 1414, stable URL: http://www.jstor.org/stable/41254753
  12. 12.
    Pajkossy T, Fekete É, Cserfalvi T, Lengyel B (2016) Electrocoagulation: an electrochemical process for water clarification. J Electrochem Sci Technol. doi: 10.5599/jese.218 Google Scholar
  13. 13.
    Khemis M, Leclerc JP, Tanguy G, Valentin G, Lapicque F (2006) Treatment of industrial liquid wastes by electrocoagulation: experimental investigations and an overall interpretation model. Chem Eng Sci 61:3602–3609CrossRefGoogle Scholar
  14. 14.
    Khemis M, Tanguy G, Leclerc JP, Valentin G, Lapicque F (2005) Electrocoagulation for the treatment of oil suspensions: relation between the rates of electrode reactions and the efficiency of waste removal. Process Saf Environ Prot 83(B1):50–57CrossRefGoogle Scholar
  15. 15.
    Attour A, Touati M, Tlili M, Ben Amor M, Lapicque F, Leclerc JP (2014) Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep Purif Technol 123:124–129CrossRefGoogle Scholar
  16. 16.
    Caldwell BP, Albano VJ (1939) Rate of solution of zinc and aluminum while cathodic. Trans Electrochem Soc 76:271–285. doi: 10.1149/1.3500282 CrossRefGoogle Scholar
  17. 17.
    van de Ven EPGT, Koelmans H (1976) The cathodic corrosion of aluminum. J Electrochem Soc 123:143–144CrossRefGoogle Scholar
  18. 18.
    Despić AR, Radošević J, Dabić P, Kliškić M (1990) Abnormal yields of hydrogen and the mechanism of its evolution during cathodic polarization of aluminum. Electrochim Acta 35:1743–1746CrossRefGoogle Scholar
  19. 19.
    Moon SM, Sl P (1997) The corrosion of pure aluminium during cathodic polarization in aqueous solutions. Corros Sci 39:399–408CrossRefGoogle Scholar
  20. 20.
    Picard T, Cathalifaud-Feuillade G, Mazet M, Vandensteendam C (2000) Cathodic dissolution in the electrocoagulation process using aluminium electrodes. J Environ Monit 2:77–80CrossRefGoogle Scholar
  21. 21.
    Mouedhen G, Feki M, Wery MDP, Ayedi HF (2007) Behavior of aluminum electrodes in electrocoagulation process. J Hazard Mater 150:124–135CrossRefGoogle Scholar
  22. 22.
    Mechelhoff M, Kelsall GH, Graham NJG (2013) Super-faradaic charge yields for aluminium in neutral aqueous solutions. Chem Eng Sci 95:353–359CrossRefGoogle Scholar
  23. 23.
    Canizares P, Carmona M, Lobato J, Martınez F, Rodrigo MA (2005) Electrodissolution of aluminum electrodes in electrocoagulation processes. Ind Eng Chem Res 44:4178–4185CrossRefGoogle Scholar
  24. 24.
    Uhlig HH (1963) Corrosion handbook. Wiley, New York, p. 54Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Éva Fekete
    • 1
  • Béla Lengyel
    • 1
  • Tamás Cserfalvi
    • 1
  • Tamás Pajkossy
    • 1
    Email author
  1. 1.Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapestHungary

Personalised recommendations