Journal of Solid State Electrochemistry

, Volume 20, Issue 7, pp 1831–1836 | Cite as

Facile synthesis of Fe@Fe2O3 core-shell nanowires as O2 electrode for high-energy Li-O2 batteries

  • Fan Wang
  • Xiangwei Wu
  • Chen Shen
  • Zhaoyin WenEmail author
Original Paper


Fe@Fe2O3 core-shell nanowires were synthesized via the reduction of Fe3+ ions by sodium borohydride in an aqueous solution with a subsequent heat treatment to form Fe2O3 shell and employed as a cathode catalyst for non aqueous Li-air batteries. The synthesized core-shell nanowires with an average diameter of 50–100 nm manifest superior catalytic activity for oxygen evolution reaction (OER) in Li-O2 batteries with the charge voltage plateau reduced to ∼3.8 V. An outstanding performance of cycling stability was also achieved with a cutoff specific capacity of 1000 milliampere hour per gram over 40 cycles at a current density of 100 mA g−1. The excellent electrochemical properties of Fe@Fe2O3 as an O2 electrode are ascribed to the high surface area of the nanowires’ structure and high electron conductivity. This study indicates that the resulting iron-containing nanostructures are promising catalyst in Li-O2 batteries.


Lithium-oxygen batteries; Fe@Fe2O3 Core-shell nanowires Catalyst Reduction reaction 



The authors highly acknowledge Prof. B. V. R. Chowdari (National University of Singapore) for his helpful discussions and the financial support from Natural Science Foundation of China (NSFC, Project No. 51432010 and No. 51272267) and Science and Technology Commission of Shanghai Municipality (14JC1493000 and 15DZ2281200).


  1. 1.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2011) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  3. 3.
    Cao R, Lee JS, Liu ML, Cho J (2012) Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2(7):816–829CrossRefGoogle Scholar
  4. 4.
    Kraytsberg A, Ein-Eli Y (2011) Review on Li-air batteries-opportunities, limitations and perspective. J Power Sources 196(3):886–893CrossRefGoogle Scholar
  5. 5.
    Zhao YL, Xu L, Mai LQ, Han CH, An QY, Xu X, Liu X, Zhang QJ (2012) Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. P Natal Acad Sci USA 109(48):19569–19574CrossRefGoogle Scholar
  6. 6.
    Xu JJ, Wang ZL, Xu D, Zhang LL, Zhang XB (2013) Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat Commun 4:2438Google Scholar
  7. 7.
    Abraham K, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRefGoogle Scholar
  8. 8.
    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393CrossRefGoogle Scholar
  9. 9.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium—air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRefGoogle Scholar
  10. 10.
    Shao YY, Park S, Xiao J, Zhang JG, Wang Y, Liu J (2012) Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal 2(5):844–857CrossRefGoogle Scholar
  11. 11.
    Li FJ, Zhang T, Zhou HS (2013) Challenges of non-aqueous Li-O-2 batteries: electrolytes, catalysts, and anodes. Energ Environ Sci 6(4):1125–1141CrossRefGoogle Scholar
  12. 12.
    Li FJ, Chen Y, Tang DM, Jian ZL, Liu C, Golberg D, Yamada A, Zhou HS (2014) Performance-improved Li-O-2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energ Environ Sci 7(5):1648–1652CrossRefGoogle Scholar
  13. 13.
    Liao K, Wang X, Sun Y, Tang D, Han M, He P, Jiang X, Zhang T, Zhou H (2015) An oxygen cathode with stable full discharge-charge capability based on 2D conducting oxide. Energ Environ Sci 8(7):1992–1997CrossRefGoogle Scholar
  14. 14.
    Black R, Lee JH, Adams B, Mims CA, Nazar LF (2013) The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Edit 52(1):392–396CrossRefGoogle Scholar
  15. 15.
    Wang F, Wen ZY, Shen C, Rui K, Wu XW, Chen CH (2015) Open mesoporous spherical shell structured Co3O4 with highly efficient catalytic performance in Li-O-2 batteries. J Mater Chem A 3(14):7600–7606CrossRefGoogle Scholar
  16. 16.
    Kim BG, Kim HJ, Back S, Nam KW, Jung Y, Han YK, Choi JW (2014) Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. Sci Rep 4:9Google Scholar
  17. 17.
    Cui YM, Wen ZY, Liu Y (2011) A free-standing-type design for cathodes of rechargeable Li-O-2 batteries. Energ Environ Sci 4(11):4727–4734CrossRefGoogle Scholar
  18. 18.
    Zhang JK, Li PF, Wang ZH, Qiao JS, Rooney D, Sun W, Sun KN (2015) Three-dimensional graphene-Co3O4 cathodes for rechargeable Li-O-2 batteries. J Mater Chem A 3(4):1504–1510CrossRefGoogle Scholar
  19. 19.
    Li M, Han C, Zhang YF, Bo XJ, Guo LP (2015) Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors. Anal Chim Acta 861:25–35CrossRefGoogle Scholar
  20. 20.
    Zhu D, Zhang L, Song M, Wang XF, Chen YG (2013) An in situ formed Pd nanolayer as a bifunctional catalyst for Li-air batteries in ambient or simulated air. Chem Commun 49(83):9573–9575CrossRefGoogle Scholar
  21. 21.
    Zhai XM, Yang W, Li MY, Lu GQ, Liu JP, Zhang XL (2013) Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon 65:277–286CrossRefGoogle Scholar
  22. 22.
    Su D, Dou S, Wang G (2014) Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries. Sci Rep 4:5767–5775CrossRefGoogle Scholar
  23. 23.
    Zhang P, He M, Xu S, Yan XB (2015) The controlled growth of porous delta-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J Mater Chem A 3(20):10811–10818CrossRefGoogle Scholar
  24. 24.
    Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q (2012) α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energ Environ Sci 5(12):9765–9768CrossRefGoogle Scholar
  25. 25.
    Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74CrossRefGoogle Scholar
  26. 26.
    Zhang WY, Zeng Y, Xu C, Tan HT, Liu WL, Zhu JX, Xiao N, Hng HH, Ma J, Hoster HE, Yazami R, Yan QY (2012) Fe2O3 nanocluster-decorated graphene as O-2 electrode for high energy Li-O-2 batteries. Rsc Adv 2(22):8508–8514CrossRefGoogle Scholar
  27. 27.
    Zhang ZA, Zhou G, Chen W, Lai YQ, Li J (2014) Facile synthesis of Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries. Ecs Electrochem Lett 3(1):A8–A10CrossRefGoogle Scholar
  28. 28.
    Lu J, Qin Y, Du P, Luo XY, Wu TP, Ren Y, Wen JG, Miller DJ, Miller JT, Amine K (2013) Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O-2 batteries. Rsc Adv 3(22):8276–8285CrossRefGoogle Scholar
  29. 29.
    Lu LR, Ai ZH, Li JP, Zheng Z, Li Q, Zhang LZ (2007) Synthesis and characterization of Fe-Fe2O3 core-shell nanowires and nanonecklaces. Cryst Growth Des 7(2):459–464CrossRefGoogle Scholar
  30. 30.
    Mills P, Sullivan J (1983) A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J Phys D Appl Phys 16(5):723CrossRefGoogle Scholar
  31. 31.
    Poonjarernsilp C, Sano N, Sawangpanich N, Charinpanitkul T, Tamon H (2014) Effect of Fe/Fe2O3 loading on the catalytic activity of sulfonated single-walled carbon nanohorns for the esterification of palmitic acid. Green Chem 16(12):4936–4943CrossRefGoogle Scholar
  32. 32.
    Laoire CO, Mukerjee S, Abraham KM, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114(19):9178–9186CrossRefGoogle Scholar
  33. 33.
    Liu W, Ai Z, Cao M, Zhang L (2014) Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core-shell nanowires. Appl Catal B-Environ 150:1–11CrossRefGoogle Scholar
  34. 34.
    Shui JL, Karan NK, Balasubramanian M, Li SY, Liu DJ (2012) Fe/N/C composite in Li-O-2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J Am Chem Soc 134(40):16654–16661CrossRefGoogle Scholar
  35. 35.
    Kang SJ, Mori T, Narizuka S, Wilcke W, Kim HC (2014) Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium-oxygen cells. Nat Commun 5:3937Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations