Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 5, pp 1491–1496 | Cite as

Operando magnetometry on Li x CoO2 during charging/discharging

  • Stefan Topolovec
  • Harald Kren
  • Gregor Klinser
  • Stefan Koller
  • Heinz Krenn
  • Roland Würschum
Short Communication

Abstract

Operando measurements of the magnetic susceptibility χ during electrochemical charging of commercially used battery electrode materials are implemented in a superconducting quantum interference device magnetometer. The capability of this measurement set-up to study electronic and chemical processes in the electrode is exemplified by Li x CoO 2 cathodes, for which reversible variations of their susceptibility χ by more than a factor of 1.5 could be continuously monitored. From the variation of χ with Li-ion concentration x for 1>x≥0.77, where Pauli paramagnetism prevails, a linear increase of the electronic density of states with Li extraction is derived, indicating that the occurring nonmetal-metal transition is of Anderson-type. For x<0.77, the change of χ(x) was assigned to alterations of the Co oxidation state, with the slope of χ(x) revealing that in addition to Co also O undergoes partial oxidation during charging. The observed increase of χ at the beginning of the discharging process could be an indication for the formation of Co\(^{2^{+}}\) at the electrode surface during reduction.

Keywords

Lithium-ion batteries Operando study Magnetic susceptibility LiCoO2 

Notes

Acknowledgments

The authors would like to thank C. Baumann for performing the dip-coating of the LiCoO 2 cathodes. Financial support by the Graz inter-university cooperation on natural sciences (NAWI Graz) is appreciated.

Supplementary material

10008_2015_3110_MOESM1_ESM.pdf (365 kb)
(PDF 371 KB)

References

  1. 1.
    Moseley PT, Park JK, Kim HS, Yoon WS, Park YL (eds) (2013) Proceedings of the 16th international meeting on lithium batteries. J Power Sources 244:1–812Google Scholar
  2. 2.
    Fergus J (ed) (2014) Proceedings of the 17th international meeting on lithium batteries. ECS Trans 62:1–280Google Scholar
  3. 3.
    Amalraj S, Aurbach D (2011) The use of in situ techniques in R&D of Li and Mg rechargeable batteries. J Solid State Electrochem 15:877–890CrossRefGoogle Scholar
  4. 4.
    Ramdon S, Bhushan B, Nagpure SC (2014) In situ electrochemical studies of lithium-ion battery cathodes using atomic force microscopy. J Power Sources 249:373–384CrossRefGoogle Scholar
  5. 5.
    Harks P, Mulder F, Notten P (2015) In situ methods for Li-ion battery research: A review of recent developments. J Power Sources 288:92–105CrossRefGoogle Scholar
  6. 6.
    Chernova NA, Nolis GM, Omenya FO, Zhou H, Li Z, Whittingham MS (2011) What can we learn about battery materials from their magnetic properties? J Mater Chem 21:9865–9875CrossRefGoogle Scholar
  7. 7.
    Imanishi N, Fujiyoshi M, Takeda Y, Yamamoto O, Tabuchi M (1999) Preparation and 7Li-NMR study of chemically delithiated Li 1−xCoO 2(0<x<0.5). Solid State Ion 118:121–128CrossRefGoogle Scholar
  8. 8.
    Levasseur S, Ménétrier M, Shao-Horn Y, Gautier L, Audemer A, Demazeau G, Largeteau A, Delmas C (2003) Oxygen vacancies and intermediate spin trivalent cobalt ions in lithium-overstoichiometric LiCoO 2. Chem Mater 15:348–354CrossRefGoogle Scholar
  9. 9.
    Sugiyama J, Nozaki H, Brewer JH, Ansaldo EJ, Morris GD, Delmas C (2005) Frustrated magnetism in the two-dimensional triangular lattice of Li xCoO 2. Phys Rev B 72:144424CrossRefGoogle Scholar
  10. 10.
    Kellerman D, Galakhov V, Semenova A, Blinovskov Y, Leonidova O (2006) Semiconductor-metal transition in defect lithium cobaltite. Phys Solid State 48:548–556CrossRefGoogle Scholar
  11. 11.
    Mukai K, Ikedo Y, Nozaki H, Sugiyama J, Nishiyama K, Andreica D, Amato A, Russo PL, Ansaldo EJ, Brewer JH, Chow KH, Ariyoshi K, Ohzuku T (2007) Magnetic phase diagram of layered cobalt dioxide Li xCoO 2. Phys Rev Lett 99:087601CrossRefGoogle Scholar
  12. 12.
    Ménétrier M, Carlier D, Blangero M, Delmas C (2008) On really stoichiometric LiCoO 2. Electrochem Solid-State Lett 11:A179–A182CrossRefGoogle Scholar
  13. 13.
    Hertz JT, Huang Q, McQueen T, Klimczuk T, Bos JWG, Viciu L, Cava RJ (2008) Magnetism and structure of Li xCoO 2 and comparison to Na xCoO 2. Phys Rev B 77:075119CrossRefGoogle Scholar
  14. 14.
    Motohashi T, Ono T, Sugimoto Y, Masubuchi Y, Kikkawa S, Kanno R, Karppinen M, Yamauchi H (2009) Electronic phase diagram of the layered cobalt oxide system Li xCoO 2 (0.0≤x≤1.0). Phys Rev B 80:165114CrossRefGoogle Scholar
  15. 15.
    Miyoshi K, Iwai C, Kondo H, Miura M, Nishigori S, Takeuchi J (2010) Magnetic and electronic properties of Li xCoO 2 single crystals. Phys Rev B 82:075113CrossRefGoogle Scholar
  16. 16.
    Mohanty D, Gabrisch H (2011) Comparison of magnetic properties in Li xCoO 2 and its decomposition products LiCo 2 O 4 and Co 3 O 4. Solid State Ion 194:41–45CrossRefGoogle Scholar
  17. 17.
    Ou-Yang TY, Huang FT, Shu GJ, Lee WL, Chu MW, Liu HL, Chou FC (2012) Electronic phase diagram of Li xCoO 2 revisited with potentiostatically deintercalated single crystals. Phys Rev B 85:035120CrossRefGoogle Scholar
  18. 18.
    Mukai K, Aoki Y, Andreica D, Amato A, Watanabe I, Giblin SR, Sugiyama J (2014) Thermally activated spin fluctuations in stoichiometric LiCoO 2 clarified by electron paramagnetic resonance and muon-spin rotation and relaxation measurements. Phys Rev B 89:094406CrossRefGoogle Scholar
  19. 19.
    Yamada T, Morita K, Kume K, Yoshikawa H, Awaga K (2014) The solid-state electrochemical reduction process of magnetite in Li batteries: in situ magnetic measurements toward electrochemical magnets. J Mater Chem C 2:5183–5188CrossRefGoogle Scholar
  20. 20.
    Gershinsky G, Bar E, Monconduit L, Zitoun D (2014) Operando electron magnetic measurements of Li-ion batteries. Energy Environ Sci 7:2012–2016CrossRefGoogle Scholar
  21. 21.
    Topolovec S, Jerabek P, Szabó DV, Krenn H,W¨urschum R (2013) SQUID magnetometry combined with in situ cyclic voltammetry: A case study of tunable magnetism of γ-Fe2 O 3 nanoparticles. J Magn Magn Mater 329:43–48CrossRefGoogle Scholar
  22. 22.
    Traußnig T, Topolovec S, Nadeem K, Szabó DV, Krenn H, Würschum R (2011) Magnetization of Fe-oxide based nanocomposite tuned by surface charging. Phys Status Solidi RRL 5:150–152CrossRefGoogle Scholar
  23. 23.
    Steyskal EM, Topolovec S, Landgraf S, Krenn H, Würschum R (2013) In situ monitoring magnetism and resistance of nanophase platinum upon electrochemical oxidation. Beilstein J Nanotech 4:394–399CrossRefGoogle Scholar
  24. 24.
    Topolovec S, Krenn H, Würschum R (2015) Electrochemical cell for in situ electrodeposition of magnetic thin films in a superconducting quantum interference device magnetometer. Rev Sci Instrum 86:063903CrossRefGoogle Scholar
  25. 25.
    Dahéron L, Dedryvère R, Martinez H, Ménétrier M, Denage C, Delmas C, Gonbeau D (2008) Electron transfer mechanisms upon lithium deintercalation from LiCoO 2 to CoO 2 investigated by XPS. Chem Mater 20:583–590CrossRefGoogle Scholar
  26. 26.
    Klinser G (2014) Master’s thesis. Institute of Materials Physics, Graz University of TechnologyGoogle Scholar
  27. 27.
    Milewska A, Świerczek K, Tobola J, Boudoire F, Hu Y, Bora D, Mun B, Braun A, Molenda J (2014) The nature of the nonmetal-metal transition in Li xCoO 2 oxide. Solid State Ion 263:110–118CrossRefGoogle Scholar
  28. 28.
    Mott NF (1974) Knight shift at an Anderson transition. Philos Mag 29:59–63CrossRefGoogle Scholar
  29. 29.
    Ménétrier M, Saadoune I, Levasseur S, Delmas C (1999) The insulator-metal transition upon lithium deintercalation from LiCoO 2: electronic properties and Li NMR study. J Mater Chem 9:1135–1140CrossRefGoogle Scholar
  30. 30.
    Iwaya K, Ogawa T, Minato T, Miyoshi K, Takeuchi J, Kuwabara A, Moriwake H, Kim Y, Hitosugi T (2013) Impact of lithium-ion ordering on surface electronic states of Li xCoO 2. Phys Rev Lett 111:126104CrossRefGoogle Scholar
  31. 31.
    Knížek K, Hejtmánek J, Maryško M, Šantavá E, Jirák Z, Buršík J, Kirakci K, Beran P (2011) Structure and properties of a novel cobaltate La 0.30CoO 2. J Solid State Chem 184:2231–2237CrossRefGoogle Scholar
  32. 32.
    Yoon WS, Kim KB, Kim MG, Lee MK, Shin HJ, Lee JM, Lee JS, Yo CH (2002) Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO 2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B 106:2526–2532CrossRefGoogle Scholar
  33. 33.
    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354–1365CrossRefGoogle Scholar
  34. 34.
    Cherkashinin G, Nikolowski K, Ehrenberg H, Jacke S, Dimesso L, Jaegermann W (2012) The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Phys Chem Chem Phys 14:12321–12331CrossRefGoogle Scholar
  35. 35.
    Ramadass P, Haran B, White R, Popov BN (2002) Performance study of commercial LiCoO 2 and spinel-based Li-ion cells. J Power Sources 111:210–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stefan Topolovec
    • 1
  • Harald Kren
    • 2
  • Gregor Klinser
    • 1
  • Stefan Koller
    • 2
  • Heinz Krenn
    • 3
  • Roland Würschum
    • 1
  1. 1.Institute of Materials PhysicsGraz University of TechnologyGrazAustria
  2. 2.VARTA Micro Innovation GmbHGrazAustria
  3. 3.Institute of PhysicsUniversity of GrazGrazAustria

Personalised recommendations