Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 1, pp 105–113 | Cite as

Preparation of polyacrylamide via surface-initiated electrochemical-mediated atom transfer radical polymerization (SI-eATRP) for Pb2+ sensing

  • Yue Sun
  • Hongying Du
  • Yi Deng
  • Yuting Lan
  • Chunliang Feng
Original Paper

Abstract

Acrylamide polymer brushes (PAM) were prepared on the surface of Au electrode for Pb2+ ion sensing via surface-initiated electrochemical-mediated atom transfer radical polymerization (SI-eATRP). The electrode modified with PAM (PAM/Au) was carefully examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), polarization modulation infrared reflection–absorption spectroscopy (PM-IRRAS), and scanning electron microscope (SEM). Further, the PAM/Au electrode was successfully used for the determination of Pb2+ ion by differential pulse anodic stripping voltammetry (DPASV). Under the optimal conditions, the PAM/Au electrode showed a linear correlation for Pb2+ concentrations in the range of 3.0 × 10−3 to 2.0 × 103 μg/L. The limit of detection (S/N = 3.3) was estimated to be 3.7 × 10−4 μg/L. Finally, polymer brush electrodes were applied to analyze Pb2+ ion in an effluent. The results of the experiment indicated that PAM/Au electrode has good accuracy and potential application in practical sample analysis. In a word, the work of this paper established a useful way for the synthesis and application of polymer brush.

Keywords

Polymer brushes SI-eATRP DPASV Pb2+ ion 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21304041, 60572009) and the Doctoral Scientific Research Foundation of Liaoning Normal University, China (No. 203596).

Reference

  1. 1.
    Retsos H, Gorodyska G, Kiriy A, Stamm M, Creton C (2005) Langmuir 21:7722–7725CrossRefGoogle Scholar
  2. 2.
    Raviv U, Frey J, Sak R, Laurat P, Tadmor R, Klein J (2002) Langmuir 18:7482–7495CrossRefGoogle Scholar
  3. 3.
    Van Zanten JH (1994) Macromolecules 27:6797–6807CrossRefGoogle Scholar
  4. 4.
    Joanny JF (1992) Langmuir 8:989–995CrossRefGoogle Scholar
  5. 5.
    Rafique S, Bin W, Bhatti AS (2015) Bioelectrochemistry 101:75–83CrossRefGoogle Scholar
  6. 6.
    Zhao B, Brittain WJ (2000) Prog Polym Sci 25:677–710CrossRefGoogle Scholar
  7. 7.
    Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA (2009) Chem Rev 109:5437–5527CrossRefGoogle Scholar
  8. 8.
    Song W, Xiao C, Cui L, Tang Z, Zhuang X, Chen X (2012) Colloid Surface B 93:188–194CrossRefGoogle Scholar
  9. 9.
    Xu FJ, Zhao JP, Kang ET, Neoh KG, Li J (2007) Langmuir 23:8585–8592CrossRefGoogle Scholar
  10. 10.
    Liu P, Liu Y, Su Z (2006) Ind Eng Chem Res 45:2255–2260CrossRefGoogle Scholar
  11. 11.
    Sun Y, Liu W (2011) Polym Bull 68:1815–1829CrossRefGoogle Scholar
  12. 12.
    Magenau AJ, Strandwitz NC, Gennaro A, Matyjaszewski K (2011) Science 332:81–84CrossRefGoogle Scholar
  13. 13.
    Li B, Yu B, Huck WT, Liu W, Zhou F (2013) J Am Chem Soc 135:1708–1710CrossRefGoogle Scholar
  14. 14.
    Li B, Yu B, Huck WT, Zhou F, Liu W (2012) Angew Chem 124:5182–5185CrossRefGoogle Scholar
  15. 15.
    Yan J, Li B, Yu B, Huck WT, Liu W, Zhou F (2013) Angew Chem Int Ed 52:9125–9129CrossRefGoogle Scholar
  16. 16.
    Shida N, Koizumi Y, Nishiyama H, Tomita I, Inagi S (2015) Angew Chem 127:1–6CrossRefGoogle Scholar
  17. 17.
    Jin GP, Xu SY, Lei P, Fu Y, Feng X, Wu ZX, Yu M, Dai S, Liu G (2014) Electrochim Acta 130:526–531CrossRefGoogle Scholar
  18. 18.
    Duan Y, Zhang L, Li S, Yang Y, Xing J, Li W, Wang X, Zhou Y (2014) Forensic Sci Int 238:e6–e10CrossRefGoogle Scholar
  19. 19.
    Sen G, Mishra S, Dey KP, Bharti S (2014) J Appl Polym Sci 131:41046–41054CrossRefGoogle Scholar
  20. 20.
    Lee TJ, Park JY, Hong SJ, Kim HJ (2015) Pulp Pap Res J 30:250–257CrossRefGoogle Scholar
  21. 21.
    Mitchell PB, Atkinson K (1992) Miner Eng 5:1439–1452CrossRefGoogle Scholar
  22. 22.
    Lilge I, Schönherr H (2013) Eur Polym J 49:1943–1951CrossRefGoogle Scholar
  23. 23.
    Hou J, Shi Q, Ye W, Stagnaro P, Yin J (2014) Chem Commun 50:14975–14978CrossRefGoogle Scholar
  24. 24.
    Jiang Y, Cai M, Tian Y, Shi H, Liang Y, Zhang H (2014) Polym Sci Ser B 56:504–511CrossRefGoogle Scholar
  25. 25.
    Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Talanta 128:327–336CrossRefGoogle Scholar
  26. 26.
    Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Anal Chim Acta 874:40–48CrossRefGoogle Scholar
  27. 27.
    Zhang B, Lu L, Hu Q, Huang F, Lin Z (2014) Biosens Bioelectron 56:243–249CrossRefGoogle Scholar
  28. 28.
    Shao D, Ren X, Hu J, Chen Y, Wang X (2010) Colloid Surface A 360:74–84CrossRefGoogle Scholar
  29. 29.
    Kalagasidis Krušić M, Milosavljević N, Debeljković A, Züm B, Karadağ E (2012) Water Air Soil Poll 223:4355–4368CrossRefGoogle Scholar
  30. 30.
    Briand E, Salmain M, Compere C, Pradier CM (2006) Colloid Surface B 53:215–224CrossRefGoogle Scholar
  31. 31.
    Jones DM, Brown AA, Huck WTS (2002) Langmuir 18:1265–1269CrossRefGoogle Scholar
  32. 32.
    Chmielarz P, Park S, Simakova A, Matyjaszewski K (2015) Polymer 60:302–307CrossRefGoogle Scholar
  33. 33.
    Mayavan S, Siva T, Sathiyanarayanan S (2013) RSC Adv 3:24868–24871CrossRefGoogle Scholar
  34. 34.
    Zhou J, Wang G, Hu J, Lu X, Li J (2006) Chem Comm 4820–4822Google Scholar
  35. 35.
    Han X, Zhu Y, Yang X, Zhang J, Li C (2010) J Solid State Electr 15:511–517CrossRefGoogle Scholar
  36. 36.
    Leitch JJ, Brosseau CL, Roscoe SG, Bessonov K, Dutcher JR, Lipkowski J (2013) Langmuir 29:965–976CrossRefGoogle Scholar
  37. 37.
    Chiem LT, Huynh L, Ralston J, Beattie DA (2006) J Colloid Interf Sci 297:54–61CrossRefGoogle Scholar
  38. 38.
    Chang CY, Wu PJ, Sun YS (2011) Soft Matter 7:9140–9147CrossRefGoogle Scholar
  39. 39.
    Geng T, Huang R, Wu D (2014) RSC Adv 4:46332–46339CrossRefGoogle Scholar
  40. 40.
    Simsek S, Ulusoy U, Ceyhan O (2003) J Radioanal Nucl Chem 256:315–321CrossRefGoogle Scholar
  41. 41.
    Akkaya R, Ulusoy U (2008) J Hazard Mater 151:380–388CrossRefGoogle Scholar
  42. 42.
    Mittal H, Maity A, Sinha Ray S (2015) J Phys Chem B 119:2026–2039CrossRefGoogle Scholar
  43. 43.
    Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Sabounchei SJ, Sarlakifar M (2015) Anal Chim Acta 870:56–66CrossRefGoogle Scholar
  44. 44.
    Serrano N, Gonzalez CA, Del VM (2015) Talanta 138:130–137CrossRefGoogle Scholar
  45. 45.
    Lee S, Bong S, Ha J, Kwak M, Park SK, Piao Y (2015) Sensor Actuat B-Chem 215:62–69CrossRefGoogle Scholar
  46. 46.
    Lee MS, Ahn JG, Ahn JW (2003) Hydrometallurgy 70:23–29CrossRefGoogle Scholar
  47. 47.
    Lin H, Li M, Mihailovič D (2015) Electrochim Acta 154:184–189CrossRefGoogle Scholar
  48. 48.
    Ferhan AR, Guo L, Zhou X, Chen P, Hong S, Kim DH (2013) Anal Chem 85:4094–4099CrossRefGoogle Scholar
  49. 49.
    Joseph A, Subramanian S, Ramamurthy PC, Sampath S, Kumar RV, Schwandt C (2014) Electrochim Acta 137:557–563CrossRefGoogle Scholar
  50. 50.
    Dong Y, Ding Y, Zhou Y, Chen J, Wang C (2014) J Electroanal Chem 717–718:206–212CrossRefGoogle Scholar
  51. 51.
    Zhang L, Li W, Shi M, Kong J (2006) Talanta 70:432–436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yue Sun
    • 1
  • Hongying Du
    • 1
  • Yi Deng
    • 1
  • Yuting Lan
    • 1
  • Chunliang Feng
    • 1
  1. 1.School of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianChina

Personalised recommendations