Advertisement

Journal of Solid State Electrochemistry

, Volume 20, Issue 4, pp 1167–1173 | Cite as

Platinum-free lead dioxide electrode for electrooxidation of organic compounds

  • Julio F. Pereira
  • Raul S. Figueiredo
  • Carlos Ponce-de-León
  • Rodnei BertazzoliEmail author
Original Paper

Abstract

As electrode material, PbO2 coatings are inexpensive and easy to manufacture by anodic deposition. Moreover, they present low resistivity and, due to their high efficiency in organic oxidation reactions, they continue to attract interest as an object of study and of application in the electrochemical treatment of effluents. During preparation of the electrode, a thin Pt layer is usually deposited on the Ti substrate before receiving the PbO2 layer in order to prevent the formation of TiO2 on the substrate surface, thereby ensuring adhesion of the coating. In this study, PbO2 layers were deposited on a Ti substrate, using Pb as interlayer in place of Pt. Aiming for a cheaper and faster-to-prepare electrode, the Pb interlayer was reduced from a Pb(NO3)2 solution on Ti and then, by reversing the potential in the same electrolyte, PbO2 was anodically deposited. The Ti/Pt/PbO2 and Ti/Pb/PbO2 electrodes were characterized comparatively by cyclic voltammetry in the potential region where the solid state surface redox transitions (SSSRT) take place. Capacitive currents were compared as well as the roughness factor being the Ti/Pb/PbO2 electrode rougher, with higher surface area. As a consequence, it showed better performance in the color electro-removal of a Remazol Black azo dye solution.

Keywords

Lead dioxide electrode Platinum-free PbO2 electrode Electrooxidation process Remazol Black color removal 

References

  1. 1.
    Fóti G, Gandini D, Comninellis CH (1997) Curr Top Electrochem 5:71–91Google Scholar
  2. 2.
    Polcaro AM, Palmas S, Renoldi F, Mascia M (1999) J Appl Electrochem 29:147–151CrossRefGoogle Scholar
  3. 3.
    Tahar NB, Savall A (1998) J Electrochem Soc 145:3427–3434CrossRefGoogle Scholar
  4. 4.
    Feng J, Houk LL, Johnson DC, Lowery SN, Carey JJ (1995) J Electrochem Soc 142:3626–3632CrossRefGoogle Scholar
  5. 5.
    Bonfatti F, Ferro S, Levezzo F, Malacarne M, Lodi G, De Battisti A (1999) J Electrochem Soc 146:2175–2179CrossRefGoogle Scholar
  6. 6.
    Tan C, Xiang B, Li Y, Fang JW, Huang M (2011) Chem Eng J 166:15–21CrossRefGoogle Scholar
  7. 7.
    Duan X, Ma F, Yuan Z, Chang LM, Jin XT (2012) J Electroanal Chem 677:90–100CrossRefGoogle Scholar
  8. 8.
    Li H, Chen Y, Zhang Y, Han WQ, Sun XY, Li JS, Wang LJ (2013) J Electroanal Chem 689:193–200CrossRefGoogle Scholar
  9. 9.
    Souza FL, Aquino JM, Irikura K, Miwa DW, Rodrigo MA, Motheo AJ (2014) Chemosphere 109:187–194CrossRefGoogle Scholar
  10. 10.
    Shmychkova O, Lukyanenko T, Yakubenko A, Amadelli R, Velichenko A (2015) Appl Catal B Environ 162:346–351CrossRefGoogle Scholar
  11. 11.
    Mindt W (1969) J Electrochem Soc 116:1076–1080CrossRefGoogle Scholar
  12. 12.
    Ruetschi P (1992) J Electrochem Soc 139:1347–1351CrossRefGoogle Scholar
  13. 13.
    Carr JP, Hampson NA (1972) Chem Rev 72:679–682CrossRefGoogle Scholar
  14. 14.
    Sexton BA, Cotteril GF, Fletcher S, Horne MD (1990) J Vac Sci Technol 8:544–548CrossRefGoogle Scholar
  15. 15.
    Munichandraiah N (1992) J Appl Electrochem 22:825–829CrossRefGoogle Scholar
  16. 16.
    Devilliers D, Thi MTD, Mahé E, Dauriac V, Lequeux N (2004) J Electroanal Chem 573:227–239CrossRefGoogle Scholar
  17. 17.
    Mohd Y, Pletcher D (2005) J Electrochem Soc 152:D97–D102CrossRefGoogle Scholar
  18. 18.
    Mahalingam T, Velumani S, Raja M, Thanikaikarasan S, Chu JP, Wang SF, Kim YD (2007) Mater Charact 58:817–822CrossRefGoogle Scholar
  19. 19.
    Sirés I, Low CTJ, Ponce-de-León C, Walsh FC (2010) Electrochim Acta 55:2163–2172CrossRefGoogle Scholar
  20. 20.
    Velichenko AB, Amadelli R, Benedetti A, Girenko DV, Kovalyov SV, Danilov FI (2002) J Electrochem Soc 149:C445–C449CrossRefGoogle Scholar
  21. 21.
    Costa FR, Da-Silva LM (2012) Quim Nov. 35:962–967Google Scholar
  22. 22.
    Da-Silva LM, De-Faria LA, Boodts JFC (2001) Electrochim Acta 47:395–403CrossRefGoogle Scholar
  23. 23.
    Li X, Pletcher D, Walsh FC (2011) Chem Soc Rev 40:3879–3894CrossRefGoogle Scholar
  24. 24.
    Velichenko AB, Knysh VA, Lukyanenko TV, Danilov FI, Devilliers D (2008) Russ J Electrochem 45:834–839Google Scholar
  25. 25.
    Gonzalez-Garcia J, Saez V, Iniesta JS, Montiel V, Aldaz A (2002) Electrochem Commun 4:370–373CrossRefGoogle Scholar
  26. 26.
    Gherardini L, Michaud P, Panizza M, Comninellis C, Vatistas N (2001) J Electrochem Soc 148:D78–D82CrossRefGoogle Scholar
  27. 27.
    Awad HS, Galwa NA (2005) Chemosphere 61:1327–1335CrossRefGoogle Scholar
  28. 28.
    Elbaydi ME, Tiwari SK, Singh RN, Rehspringer JL, Chartier P, Koenig JF, Poillerat G (1995) J Solid State Chem 116:157–169CrossRefGoogle Scholar
  29. 29.
    Krstajic N, Trasatti S (1995) J Electrochem Soc 142:2675–2681CrossRefGoogle Scholar
  30. 30.
    Baronetto D, Krstajic N, Trasatti S (1994) Electrochim Acta 39:2359–2362CrossRefGoogle Scholar
  31. 31.
    Palmas S, Ferrara F, Vacca A, Mascia M, Polcaro AM (2007) Electrochim Acta 53:400–406CrossRefGoogle Scholar
  32. 32.
    Hepel M, Hazelton S (2005) Electrochim Acta 50:5278–5921CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Julio F. Pereira
    • 1
  • Raul S. Figueiredo
    • 1
  • Carlos Ponce-de-León
    • 2
  • Rodnei Bertazzoli
    • 1
    Email author
  1. 1.Faculdade de Engenharia MecânicaUniversidade Estadual de CampinasCampinasBrazil
  2. 2.School of Engineering SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations