Journal of Solid State Electrochemistry

, Volume 19, Issue 10, pp 3139–3144 | Cite as

Carbon nanotube film replacing silver in high-efficiency solid-state dye solar cells employing polymer hole conductor

  • Kerttu Aitola
  • Jinbao Zhang
  • Nick Vlachopoulos
  • Janne Halme
  • Antti Kaskela
  • Albert G. Nasibulin
  • Esko I. Kauppinen
  • Gerrit Boschloo
  • Anders Hagfeldt
Original Paper

Abstract

A semitransparent, flexible single-walled carbon nanotube (SWCNT) film was efficiently used in place of evaporated silver as the counter electrode of a poly(3,4-ethylenedioxythiophene) polymer-based solid-state dye solar cell (SSDSC): the solar-to-electrical energy conversion efficiency of the SWCNT-SSDSC was 4.8 % when it was 5.2 % for the Ag-SSDSC. The efficiency difference stemmed from a 0.1-V difference in the open-circuit voltage, whose reason was speculated to be related to the different recombination processes in the two types of SSDSCs.

Keywords

Dye-sensitized solar cell Polymer hole-conducting medium Poly(3,4-ethylenedioxythiophene) Counter electrode Carbon nanotube film 

References

  1. 1.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Asghar MI, Miettunen K, Halme J et al (2010) Review of stability for advanced dye solar cells. Energy Environ Sci 3:418–426CrossRefGoogle Scholar
  3. 3.
    Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585CrossRefGoogle Scholar
  4. 4.
    Yang L, Xu B, Bi D et al (2013) Initial light soaking treatment enables hole transport material to outperform spiro-OMeTAD in solid-state dye-sensitized solar cells. J Am Chem Soc 135:7378–7385CrossRefGoogle Scholar
  5. 5.
    Saito Y, Kitamura T, Wada Y, Yanagida S (2002) Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells. Synth Met 131:185–187CrossRefGoogle Scholar
  6. 6.
    Liu X, Zhang W, Uchida S et al (2010) An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv Mater 22:150–155CrossRefGoogle Scholar
  7. 7.
    Liu X, Cheng Y, Wang L et al (2012) Light controlled assembling of iodine-free dye-sensitized solar cells with poly(3,4-ethylenedioxythiophene) as a hole conductor reaching 7.1 % efficiency. Phys Chem Chem Phys 14:7098–7103CrossRefGoogle Scholar
  8. 8.
    Kaskela A, Nasibulin AG, Timmermans MY et al (2010) Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett 10:4349–4355CrossRefGoogle Scholar
  9. 9.
    Du Pasquier A, Unalan HE, Kanwal A et al (2005) Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl Phys Lett 87:1–3CrossRefGoogle Scholar
  10. 10.
    Rowell MW, Topinka MA, McGehee MD et al (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88:233506CrossRefGoogle Scholar
  11. 11.
    Kymakis E, Stratakis E, Koudoumas E (2007) Integration of carbon nanotubes as hole transport electrode in polymer/fullerene bulk heterojunction solar cells. Thin Solid Films 515:8598–8600CrossRefGoogle Scholar
  12. 12.
    Suzuki K, Yamaguchi M, Kumagai M, Yanagida S (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32:28–29CrossRefGoogle Scholar
  13. 13.
    Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films 2008. Nano Lett 8:19–24CrossRefGoogle Scholar
  14. 14.
    Aitola K, Kaskela A, Halme J et al (2010) Single-walled carbon nanotube thin-film counter electrodes for indium tin oxide-free plastic dye solar cells. J Electrochem Soc 157:B1831–B1837CrossRefGoogle Scholar
  15. 15.
    Aitola K, Halme J, Feldt S et al (2013) Highly catalytic carbon nanotube counter electrode on plastic for dyesolar cells utilizing cobalt-based redox mediator. Electrochim Acta 111:206–209CrossRefGoogle Scholar
  16. 16.
    Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647CrossRefGoogle Scholar
  17. 17.
    Li Z, Kulkarni SA, Boix PP et al (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8:6797–6804CrossRefGoogle Scholar
  18. 18.
    Habisreutinger SN, Leijtens T, Eperon GE et al (2014) Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J Phys Chem Lett 5:4207–4212CrossRefGoogle Scholar
  19. 19.
    Habisreutinger SN, Leijtens T, Eperon GE et al (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14:5561–5568CrossRefGoogle Scholar
  20. 20.
    Rong Y, Li X, Ku Z et al (2012) Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Sol Energy Mater Sol Cells 105:148–152CrossRefGoogle Scholar
  21. 21.
    Xu M, Liu G, Li X et al (2013) Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Org Electron Phys Mater Appl 14:628–634Google Scholar
  22. 22.
    Manseki K, Jarernboon W, Youhai Y et al (2011) Solid-state dye-sensitized solar cells fabricated by coupling photoelectrochemically deposited poly(3,4-ethylenedioxythiophene) (PEDOT) with silver-paint on cathode. Chem Commun 47:3120–3122CrossRefGoogle Scholar
  23. 23.
    Gabrielsson E, Ellis H, Feldt S et al (2013) Convergent/divergent synthesis of a linker-varied series of dyes for dye-sensitized solar cells based on the D35 donor. Adv Energy Mater 3:1647–1656CrossRefGoogle Scholar
  24. 24.
    Yang L, Zhang J, Shen Y et al (2013) New approach for preparation of efficient solid-state dye-sensitized solar cells by photoelectrochemical polymerization in aqueous micellar solution. J Phys Chem Lett 4:4026–4031CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kerttu Aitola
    • 1
  • Jinbao Zhang
    • 1
  • Nick Vlachopoulos
    • 2
  • Janne Halme
    • 3
  • Antti Kaskela
    • 3
  • Albert G. Nasibulin
    • 3
    • 4
  • Esko I. Kauppinen
    • 3
  • Gerrit Boschloo
    • 1
  • Anders Hagfeldt
    • 1
    • 2
  1. 1.Department of Chemistry - Ångström Laboratory, Physical ChemistryUppsala UniversityUppsalaSweden
  2. 2.Institute of Chemical Sciences and EngineeringÉcole Polytechnique de Fédérale de LausanneLausanneSwitzerland
  3. 3.Department of Applied PhysicsAalto University School of ScienceAaltoFinland
  4. 4.Skolkovo Institute of Science and TechnologySkolkovoRussia

Personalised recommendations