Advertisement

Journal of Solid State Electrochemistry

, Volume 19, Issue 11, pp 3297–3303 | Cite as

Inducing rotational motion in the mercury beating heart system

  • Jorge Luis Ocampo-Espindola
  • Elizeth Ramírez -Álvarez
  • Fernando Montoya
  • Punit ParmanandaEmail author
  • Marco Rivera
Original Paper

Abstract

In this paper, we report experimental results showing the generation of rotational motion in a non-autonomous Mercury Beating Heart system. Using an electrochemical cell under potentiostatic conditions, a traveling chemomechanical wave can be created on the periphery of the surface of a mercury drop, placed on a concave glass surface, and completely immersed in an acidic media. Due to the spherical geometry of the container, this chemomechanical wave deforms continuously the surface of the drop to induce a variety of rotatory dynamics with different topological structures. In the present study, the applied potential was systematically varied to observe the different dynamical structures. Since the time series of the generated current does not provide useful information, the corresponding image analysis of the bidimensional projection of the surface of the drop was performed in order to verify the existence of the traveling waves.

Keywords

Mercury beating heart Rotational motion Traveling wave 

Notes

Acknowledgments

This work has been supported by the Consejo Nacional de Ciencia y Tecnología (México), the Secretaría de Investigación de la Universidad Autónoma del Estado de Morelos (México), the Programa de Mejoramiento del Profesorado (México), the Indian Institute of Technology Bombay (India), and the Department of Science and Technology (India).

Supplementary material

(MPG 7.36 MB)

(MPG 4.24 MB)

(MPG 7.37 MB)

(MPG 7.37 MB)

(MPG 7.36 MB)

(MPG 7.37 MB)

(MPG 7.35 MB)

(MPG 7.36 MB)

10008_2015_2902_MOESM9_ESM.tex (30 kb)
(TEX 29.6 KB)

References

  1. 1.
    Verma DK, Contractor AQ, Parmananda P (2013) Potential-dependent topological modes in the mercury beating heart system. J Phys Chem A 117:267–274CrossRefGoogle Scholar
  2. 2.
    Ramírez-Álvarez E, Ocampo-Espindola JL, Montoya F, Yousif F, Vázquez F, Rivera M (2014) Extensive study of shape and surface structure formation in the mercury beating heart system. J Phys Chem A 118:10673–10678CrossRefGoogle Scholar
  3. 3.
    Nakata S, Komoto H, Hayashi K, Menzinger M (2000) Mercury Drop “Attacks” an Oxidant Crystal. J Phys Chem B 104:3589–3593CrossRefGoogle Scholar
  4. 4.
    Smolin S, Imbihl R (1996) Hydrodynamic modes of the beating mercury heart in varying geometries. J Phys Chem 100:19055–19058CrossRefGoogle Scholar
  5. 5.
    Lippman G (1873) The relation between capillary and electrical phenomena. G Ann Phys 149:546–561CrossRefGoogle Scholar
  6. 6.
    Keizer J, Rock PA, Lin SW (1979) Analysis of the oscillations in beating mercury heart system. J Am Chem Soc 101:5637–5649CrossRefGoogle Scholar
  7. 7.
    Lin SW, Keizer J, Rock PA (1974) On the Mechanism of Oscillations in the Beating Mercury Heart. Proc Natl Acad Sci USA 71:4477–4481CrossRefGoogle Scholar
  8. 8.
    Demiri S, Najdoski M, Mirceski V, Petrusevski VM, Rosenberg D (2007) Mercury Beating Heart: Modifications to the classical demonstration. J Chem Educ 84:1292CrossRefGoogle Scholar
  9. 9.
    Marqués MI, Zhao YW, García N (1997) Revisiting the Beating Mercury Heart Systems: Steps in the voltage figures due to nanocontacts. J Phys Chem B 101:2333–2338CrossRefGoogle Scholar
  10. 10.
    Avnir D (1989) Chemically induced pulsations of interfaces: the Mercury Beating Heart. J Chem Educ 66:211CrossRefGoogle Scholar
  11. 11.
    Kim CW, Yeo IH, Paik WK (1996) Mechanism of the Mercury Beating Heart: an experimental study of the electrochemical-mechanical Oscillator. Electrochim Acta 41:2829–2836CrossRefGoogle Scholar
  12. 12.
    Olson J, Ursenbach C, Birss VI, Laidlaw WG (1989) Hydrodynamic mode selection due to the electrocapillary effect: the Mercury Beating Heart in neutral and basic solutions. J Phys Chem 93:8258–8263CrossRefGoogle Scholar
  13. 13.
    Castillo-Rojas S, González-Chávez JL, Vicente L, Burillo G (2001) Study of the extinction dynamics of the Mercury Beating Heart Reaction in acid solutions and in the presence of γ-radiation. J Phys Chem A 105:8038–8045CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jorge Luis Ocampo-Espindola
    • 1
  • Elizeth Ramírez -Álvarez
    • 2
  • Fernando Montoya
    • 3
  • Punit Parmananda
    • 4
    Email author
  • Marco Rivera
    • 1
  1. 1.Centro de Investigación en Ciencias, UAEMCuernavacaMéxico
  2. 2.Physik-DepartmentTU-MünchenGarching bei MünchenGermany
  3. 3.LIVC, Instituto de Biotecnología, UNAMCuernavacaMéxico
  4. 4.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations