Advertisement

Journal of Solid State Electrochemistry

, Volume 19, Issue 8, pp 2399–2411 | Cite as

Underpotential deposition of selenium and antimony on gold

  • Yuan Chen
  • Lishi Wang
  • Annie Pradel
  • Alexandre Merlen
  • Michel Ribes
  • Marie-Christine Record
Original Paper

Abstract

The present paper is a detailed study on the deposition of Sb2Se3 thin films by electrochemical atomic layer epitaxy (EC-ALE). The related electrochemical aspects have been deeply investigated by means of cyclic voltammetry, anodic potentiodynamic scanning, and coulometry. The UPD layer of Se was obtained by first depositing both UPD Se and a small amount of bulk Se and then stripping the redundant bulk Se in blank solutions. A “two times rinsing” method was developed to avoid the formation of red Se during the rinsing process. The deposition parameters were determined for the first three EC-ALE cycles, and from these values, a nanofilm containing Sb and Se atoms has been obtained. By scanning electron microscopy and coulometry, it was shown that the deposit is compact and it has a stoichiometry very close to that of Sb2Se3. The Raman spectral analyses show that the deposit is made of Sb2Se3 nanoclusters.

Keywords

Electrochemistry Underpotential deposition EC-ALE Sb2Se3 Thin films 

Notes

Acknowledgments

The authors gratefully acknowledge Dr. C. Pardanaud (PIIM Laboratory, Aix Marseille University) for the Raman scattering measurements and the China Scholarship Council (CSC) for the financial support of Yuan Chen’s PhD thesis.

References

  1. 1.
    Ghosh G (1993) The Sb-Se (antimony-selenium) system. Journal of Phase Equilibria 14:753–763CrossRefGoogle Scholar
  2. 2.
    Madelung O (1992) Semiconductors oher than group IV elements and III-V compounds. Springer, GermanyGoogle Scholar
  3. 3.
    Fernández AM, Merino MG (2000) Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications. Thin Solid Films 366:202–206CrossRefGoogle Scholar
  4. 4.
    Rajpure KY, Bhosale CH CH (2002) Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media. Materials Chemistry and Physics 73:6–12CrossRefGoogle Scholar
  5. 5.
    Wang D, Yu D, Mo M, Liu X, Qian Y (2003) Preparation and characterization of wire-like Sb2Se3 and flake-like Bi2Se3 nanocrystals. Journal of Crystal Growth 253:445–451CrossRefGoogle Scholar
  6. 6.
    Xue MZ, Fu ZW (2008) Pulsed laser deposited Sb2Se3 anode for lithium-ion batteries. Journal of Alloys and Compounds 458:351–356CrossRefGoogle Scholar
  7. 7.
    Yu L, Chen J, Fu ZW (2010) Pulsed laser deposited heterogeneous mixture of Li2Se–Sb2Se3 nanocomposite as a new storage lithium material. Electrochimica Acta 55:1258–1264CrossRefGoogle Scholar
  8. 8.
    Wang X, Cai KF, Shang F, Chen S (2013) Preparation and electrical transport properties of nanostructured Sb2Se3 films fabricated by combining spin-coating and gas-induced reduction. Journal of Nanoparticle Research 15:1–8Google Scholar
  9. 9.
    Desai JD, Ganage KN (1999) Electrodeposition of Sb2Se3 thin films from alkaline bath. Bulletin of Electrochemistry 15:318–320Google Scholar
  10. 10.
    Torane AP, Bhosale CH (2002) Preparation and characterization of electrodeposited Sb2Se3 thin films from non-aqueous media. Journal of Physics and Chemistry of Solids 63:1849–1855CrossRefGoogle Scholar
  11. 11.
    Shi X, Zhang X, Tian Y, Shen C, Wang C, Gao HJ (2012) Electrodeposition of Sb2Se3 on indium-doped tin oxides substrate: Nucleation and growth. Applied Surface Science 258:2169–2173CrossRefGoogle Scholar
  12. 12.
    Lai Y, Han C, Lv X, Yang J, Liu F, Li J, Liu Y (2012) Electrodeposition of antimony selenide thin films from aqueous acid solutions. Journal of Electroanalytical Chemistry 671:73–79CrossRefGoogle Scholar
  13. 13.
    Gregory BW, Stickney JL (1991) Electrochemical Atomic Layer Epitaxy (ECALE). Journal of Electroanalytical Chemistry 300:543–561CrossRefGoogle Scholar
  14. 14.
    Lister TE, Stickney JL (1996) Formation of the first monolayer of CdSe on Au(111) by electrochemical ALE. Applied Surface Science 107:153–160CrossRefGoogle Scholar
  15. 15.
    Vaidyanathan R, Stickney JL, Cox SM, Compton SP, Happek U (2003) Formation of In2Se3 thin films and nanostructures using electrochemical atomic layer epitaxy. Journal of Electroanalytical Chemistry 559:55–61CrossRefGoogle Scholar
  16. 16.
    Zhu W, Yang JY, Gao XH, Hou J, Bao SQ, Fan XA (2005) The underpotential deposition of bismuth and tellurium on cold rolled silver substrate by ECALE. Electrochimica Acta 50:5465–5472CrossRefGoogle Scholar
  17. 17.
    Foresti ML, Milani S, Loglio F, Innocenti M, Pezzatini G, Cattarin S (2005) Ternary CdSxSe(1-x) deposited on ag(111) by ECALE: Synthesis and characterization. Langmuir 21:6900–6907CrossRefGoogle Scholar
  18. 18.
    Xiao CJ, Yang JY, Zhu W, Peng JY, Zhang JS (2009) Electrodeposition and characterization of Bi2Se3 thin films by electrochemical atomic layer epitaxy (ECALE). Electrochimica Acta 54:6821–6826CrossRefGoogle Scholar
  19. 19.
    Lin S, Zhang X, Shi XZ, Wei JP, Lu DB, Zhang YZ, Kou HH, Wang CM (2011) Nanoscale semiconductor Pb1-xSnxSe (x=0.2) thin films synthesized by electrochemical atomic layer deposition. Applied Surface Science 257:5803–5807CrossRefGoogle Scholar
  20. 20.
    Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. Journal of Electroanalytical Chemistry 407(1–2):1–11CrossRefGoogle Scholar
  21. 21.
    Xiao X, Li H, Wang M, Zhang K, Si P (2014) Examining the effects of self-assembled monolayers on nanoporous gold based amperometric glucose biosensors. Analyst 139:488–494CrossRefGoogle Scholar
  22. 22.
    Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure and Applied Chemistry 63:711–734CrossRefGoogle Scholar
  23. 23.
    Chen Y, Wang L, Pradel A, Ribes M, Record M-C (2014) A voltammetric study of the underpotential deposition of cobalt and antimony on gold. Journal of Electroanalytical Chemistry 724:55–61CrossRefGoogle Scholar
  24. 24.
    Wade TL, Ward LC, Maddox CB, Happek U, Stickney JL (1999) Electrodeposition of InAs. Electrochemical and Solid State Letters 2:616–618CrossRefGoogle Scholar
  25. 25.
    Wade TL, Vaidyanathan R, Happek U, Stickney JL (2001) Electrochemical formation of a III-V compound semiconductor superlattice: InAs/InSb. Journal of Electroanalytical Chemistry 500:322–332CrossRefGoogle Scholar
  26. 26.
    Flowers BH, Wade TL, Garvey JW, Lay M, Happek U, Stickney JL (2002) Atomic layer epitaxy of CdTe using an automated electrochemical thin-layer flow deposition reactor. Journal of Electroanalytical Chemistry 524:273–285CrossRefGoogle Scholar
  27. 27.
    Zhu W, Yang JY, Gao XH, Bao SQ, Fan XA, Zhang TJ, Cui K (2005) Effect of potential on bismuth telluride thin film growth by electrochemical atomic layer epitaxy. Electrochimica Acta 50:4041–4047CrossRefGoogle Scholar
  28. 28.
    Greenwood NN, Earnshaw A (1984) Chemistry of the Elements. Pergamon Press, OxfordGoogle Scholar
  29. 29.
    Huang BM, Lister TE, Stickney JL (1997) Se adlattices formed on Au(100), studies by LEED, AES, STM and electrochemistry. Surface Science 392:27–43CrossRefGoogle Scholar
  30. 30.
    Venkatasamy V, Mathe MK, Cox SM, Happek U, Stickney JL (2006) Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE). Electrochimica Acta 51:4347–4351CrossRefGoogle Scholar
  31. 31.
    Colletti LP, Flowers BH, Stickney JL (1998) Formation of thin films of CdTe, CdSe, and CdS by electrochemical atomic layer epitaxy. Journal of the Electrochemical Society 145:1442–1449CrossRefGoogle Scholar
  32. 32.
    Espinosa AM, Tascón ML, Vázquez MD, Batanero PS (1992) Electroanalytical study of selenium(+IV) at a carbon paste electrode with electrolytic binder and electroactive compound incorporated. Electrochimica Acta 37:1165–1172CrossRefGoogle Scholar
  33. 33.
    Yan JW, Wu Q, Shang WH, Mao BW (2004) Electrodeposition of Sb on Au(100) at underpotentials: structural transition involving expansion of the substrate surface. Electrochemistry Communications 6:843–848CrossRefGoogle Scholar
  34. 34.
    Zhu W, Yang JY, Zhou DX, Mao CJ, Duan XK (2008) Electrochemical atom-by-atom growth of highly uniform thin sheets of thermoelectric bismuth telluride via the route of ECALE. Journal of Electroanalytical Chemistry 614:41–48CrossRefGoogle Scholar
  35. 35.
    Zhu W, Yang JY, Zhou D, Xiao CJ, Duan XK (2008) Development of growth cycle for antimony telluride film on Au(111) disk by electrochemical atomic layer epitaxy. Electrochimica Acta 53:3579–3586CrossRefGoogle Scholar
  36. 36.
    Gao XH, Yang JY, Zhu W, Hou J, Bao SQ, Xi'an F, Duan XK (2006) Deposition of antimony telluride thin film by ECALE, Science in China Series E-Technological Sciences. Science in China Series E-Technological Sciences 49:685–692CrossRefGoogle Scholar
  37. 37.
    Loglio F, Innocenti M, D'Acapito F, Felici R, Pezzatini G, Salvietti E, Foresti ML (2005) Cadmium selenide electrodeposited by ECALE: electrochemical characterization and preliminary results by EXAFS. Journal of Electroanalytical Chemistry 575:161–167CrossRefGoogle Scholar
  38. 38.
    Yang JY, Zhu W, Gao XH, Bao SQ, Fan M (2005) Electrochemical aspects of the formation of Bi2Te3 thin film via the route of ECALE. Journal of Electroanalytical Chemistry 577:117–123CrossRefGoogle Scholar
  39. 39.
    Lu J, Han Q, Yang X, Lu L, Wang X (2008) Preparation of ultra-long Sb2Se3 nanoribbons via a short-time solvothermal process. Materials Letters 62:2415–2418CrossRefGoogle Scholar
  40. 40.
    Ma X, Zhang Z, Wang X, Wang S, Xu F, Qian Y (2004) Large-scale growth of wire-like Sb2Se3 microcrystallines via PEG-400 polymer chain-assisted route. Journal of Crystal Growth 263:491–497CrossRefGoogle Scholar
  41. 41.
    Wang J, Deng Z, Li Y (2002) Synthesis and characterization of Sb2Se3 nanorods. Materials Research Bulletin 37:495–502CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Li G, Zhang B, Zhang L (2004) Synthesis and characterization of hollow Sb2Se3 nanospheres. Materials Letters 58:2279–2282CrossRefGoogle Scholar
  43. 43.
    Bera A, Pal K, Muthu DVS, Sen S, Guptasarma P, Waghmare UV, Sood AK (2013) Sharp Raman anomalies and broken adiabaticity at a pressure induced transition from band to topological insulator in Sb2Se3. Physical Review Letters 110:107401–107405CrossRefGoogle Scholar
  44. 44.
    Ivanova ZG, Cernoskova E, Vassilev VS, Boycheva SV (2003) Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses. Materials Letters 57:1025–1028CrossRefGoogle Scholar
  45. 45.
    Delafosse G, Merlen A, Clair S, Patrone L (2012) A surface enhanced Raman spectroscopy study of aminothiophenol and aminothiophenol-C60 self-assembled monolayers: Evolution of Raman modes with experimental parameters. The Journal of Chemical Physics 136:194704–194707CrossRefGoogle Scholar
  46. 46.
    Merlen A, Gadenne V, Romann J, Chevallier V, Patrone L, Valmalette JC (2009) Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates. Nanotechnology 20:215705–215707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yuan Chen
    • 1
    • 2
    • 3
  • Lishi Wang
    • 1
    • 2
  • Annie Pradel
    • 3
  • Alexandre Merlen
    • 2
    • 4
  • Michel Ribes
    • 3
  • Marie-Christine Record
    • 1
    • 2
  1. 1.Aix-Marseille UniversityIM2NPMarseille Cedex 20France
  2. 2.CNRS, UMR 7334IM2NPMarseille Cedex 20France
  3. 3.Institut Charles Gerhardt Montpellier, UMR CNRS 5253, ChV, CC1503Université Montpellier IIMontpellier Cedex 5France
  4. 4.Université de Toulon, IM2NPAvenue de l’UniversitéLa GardeFrance

Personalised recommendations