Journal of Solid State Electrochemistry

, Volume 19, Issue 8, pp 2223–2233 | Cite as

Insight into electrocatalytic stability of low loading Pt-Bi/GC and Pt/GC clusters in formic acid oxidation

  • J. D. Lović
  • S. I. Stevanović
  • D. V. Tripković
  • A. V. Tripković
  • R. M. Stevanović
  • V. M. Jovanović
  • K. Dj. Popović
Original Paper


Formic acid oxidation was examined on platinum-bismuth deposits on glassy carbon substrate prepared by two-step process, i.e., electrochemical deposition of Bi followed by electrochemical deposition of Pt as described in our previous article (J Electrochem Soc 161:H547–H554, 2014). Upon treatment of as-prepared clusters by slow anodic sweep, bimetallic structure consisting of Bi core occluded by Pt and Bi-oxide was obtained and exhibited significant activity and exceptional stability in HCOOH oxidation. In order to explain such electrocatalytic stability, in this work, the electrochemical properties of Pt@Bi/GC catalyst were investigated applying same protocols in supporting electrolyte with or without HCOOH and compared with Pt/GC. The protocols comprised potentiodynamic, quasi-steady-state, and chronoamperometric measurements combined with the surface characterization by COads stripping voltammetry. Application of potential cycling at Pt@Bi/GC electrode in supporting electrolyte containing HCOOH leads to minor change in surface morphology, mildly leaching of Bi from the electrode surface, and negligible decrease in activity. On the other hand, significant Bi dissolution and considerable decrease in activity are the effects of the same treatment without HCOOH. Contrary to Pt@Bi/GC, Pt/GC electrodes subjected to the same protocols exhibit completely opposite properties being more stabile during potential cycling without HCOOH than in the presence of this acid. Exceptional stability in formic acid oxidation of Pt@Bi/GC catalyst is thus most probably the result of the combination of predominant dehydrogenation path of the reaction, suppressed Bi leaching, and compensation of dissolved Bi from the core as its source due to which surface morphology endured minor changes.


Formic acid oxidation Pt@Bi/GC catalyst Pt/GC catalyst Electrocatalytic stability 



This work was financially supported by the Ministry of Education and Science, Republic of Serbia, Contract No. H-172060.


  1. 1.
    Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115:229–235CrossRefGoogle Scholar
  2. 2.
    Yu X, Pickup PG (2008) J Power Sources 182:124–132CrossRefGoogle Scholar
  3. 3.
    Feliu JM, Herrero E (2003) In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells: fundamentals technology and applications, Vol. 2. Wiley, New York, Ch. 42Google Scholar
  4. 4.
    Marković NM, Ross PN Jr (2002) Surf Sci Rep 45:117–229CrossRefGoogle Scholar
  5. 5.
    Zhang LJ, Wang ZY, Xia DG (2006) J Alloys Compounds 426:268–271CrossRefGoogle Scholar
  6. 6.
    Liu W, Huang J (2009) J Power Sources 189:1012–1015CrossRefGoogle Scholar
  7. 7.
    Obradović MD, Rogan JR, Babić BM, Tripković AV, Gautam ARS, Radmilović VR, Gojković SLJ (2012) J Power Sources 197:72–79CrossRefGoogle Scholar
  8. 8.
    Wang X, Wang M, Zhou D, Xia Y (2011) Phys Chem Chem Phys 13:13594–13567CrossRefGoogle Scholar
  9. 9.
    Lan F, Wang D, Lu S, Zhang J, Liang D, Peng S, Liua Y, Xiang Y (2013) J Mater Chem A 1:1548–1552CrossRefGoogle Scholar
  10. 10.
    Blasini DR, Rochefort D, Fachini E, Alden LR, DiSalvo FJ, Cabrera CR, Abruna HD (2006) Surf Sci 600:2670–2680CrossRefGoogle Scholar
  11. 11.
    Lović JD, Stevanović SI, Tripković DV, Tripković VV, Stevanović RM, Popović KDJ, Jovanović VM (2014) J Electrochem Soc 161:H547–H554CrossRefGoogle Scholar
  12. 12.
    Saravanan G, Nanba K, Kobayashi G, Matsumoto F (2013) Electrochim Acta 99:15–21CrossRefGoogle Scholar
  13. 13.
    Huang Y, Zheng S, Lin X, Su L, Guo Y (2012) Electrochim Acta 63:346–353CrossRefGoogle Scholar
  14. 14.
    Bromberg L, Fayette M, Martens B, Luo ZP, Wang Y, Xu D, Zhang J, Fang J, Dimitrov N (2013) Electrocatalysis 4:24–36CrossRefGoogle Scholar
  15. 15.
    Kim B-J, Kwon K, Rhee CK, Han J, Lim T-H (2008) Electrochim Acta 53:7744–7750CrossRefGoogle Scholar
  16. 16.
    Volpe D, Casado-Rivera E, Alden L, Lind C, Hagerdon K, Downie C, Korzniewski C, DiSalvo FJ, Abruna HD (2004) J Electrochem Soc 151:A971–A977CrossRefGoogle Scholar
  17. 17.
    Tripković AV, Popović KDJ, Stevanović RM, Socha R, Kowal A (2006) Electrochem Comm 8:1492–1498CrossRefGoogle Scholar
  18. 18.
    Yu X, Pickup PG (2011) Electrochim Acta 56:4037–4043CrossRefGoogle Scholar
  19. 19.
    Lović JD, Obradović MD, Tripković DV, Popović KDJ, Jovanović VM, Gojković SL, Tripković AV (2012) Electrocatalysis 3:346–352CrossRefGoogle Scholar
  20. 20.
    De-los-Santos-Alvarez N, Alden LR, Rus E, Wang H, DiSalvo FJ, Abruna HD (2009) J Electroanal Chem 626:14–22CrossRefGoogle Scholar
  21. 21.
    Lović JD, Tripković DV, Popović KDJ, Jovanović VM, Tripkovic AV (2013) J Serb Chem Soc 78:1189–1202CrossRefGoogle Scholar
  22. 22.
    Daniele S, Bergamin S (2007) Electrochem Comm 9:1388–1393CrossRefGoogle Scholar
  23. 23.
    Liu Y, Lowe MA, DiSalvo FJ, Abruna HD (2010) J Phys Chem C 114:14929–14938CrossRefGoogle Scholar
  24. 24.
    Liu Y, Lowe MA, Finkelstein KD, Dale DS, DiSalvo FJ, Abruna HD (2010) Chem A Eur J 16:13689–13697CrossRefGoogle Scholar
  25. 25.
    Liu Y, Abe H, Edvenson HM, Ghosh T, DiSalvo FJ, Abruna HD (2010) Phys Chem Chem Phys 12:12978–12986CrossRefGoogle Scholar
  26. 26.
    Grozovski V, Climent V, Herrero E, Feliu JM (2010) Phys Chem Chem Phys 12:8822–8831CrossRefGoogle Scholar
  27. 27.
    Sugawara Y, Yadav AP, Nishikata A, Tsuru T (2011) J Electroanal Chem 662:379–383CrossRefGoogle Scholar
  28. 28.
    Cui C, Ahmadi M, Behafarid F, Gan L, Neumann M, Heggen M, Cuenya BR, Strasser P (2013) Faraday Discuss 162:91–112CrossRefGoogle Scholar
  29. 29.
    Tang L, Han B, Persson K, Friesen C, He T, Sieradzki K, Ceder G (2010) J Am Chem Soc 132:596–600CrossRefGoogle Scholar
  30. 30.
    Mayrhofer KJJ, Arenz M, Blizanac BB, Stamenković V, Ross PN, Marković NM (2005) Electrochim Acta 50:5144–5154CrossRefGoogle Scholar
  31. 31.
    Daniele S, Bragato C, Battistel D (2012) Electroanalysis 24:759–766CrossRefGoogle Scholar
  32. 32.
    Habibi B, Delnavaz N (2012) RSC Adv 2:1609–1617CrossRefGoogle Scholar
  33. 33.
    Cui C-H, Li H-H, Cong H-P, Yu S-H, Tao FF (2012) Chem Commun 48:12062–12064CrossRefGoogle Scholar
  34. 34.
    Jiang K, Cai W-B (2014) Appl Catal B Environ 147:185–192CrossRefGoogle Scholar
  35. 35.
    Habibi B, Delnavaz N (2010) Int J Hydrogen Energy 35:8831–8840CrossRefGoogle Scholar
  36. 36.
    Lopez-Cudero A, Solla-Gullon J, Herrero E, Aldaz A, Feliu JM (2010) J Electroanal Chem 644:117–126CrossRefGoogle Scholar
  37. 37.
    Arenz M, Mayrhofer KJJ, Stamenković V, Blizanac BB, Tomoyuki T, Ross PN, Marković NM (2005) J Am Chem Soc 127:6819–6829CrossRefGoogle Scholar
  38. 38.
    Obradović MD, Gojković SLJ (2012) J Electroanal Chem 664:152–155CrossRefGoogle Scholar
  39. 39.
    Maillard F, Schreier S, Hanzlik M, Savinova ER, Weinkauf S, Stimming U (2005) Phys Chem Chem Phys 7:385–393CrossRefGoogle Scholar
  40. 40.
    Ciapina EG, Santos SF, Gonzalez ER (2010) J Electroanal Chem 644:132–143CrossRefGoogle Scholar
  41. 41.
    Strmcnik DS, Tripković DV, Van der Vliet D, Chang K-C, Komanicky V, You H, Karapetrov G, Greeley JP, Stamenković VR, Marković NM (2008) J Am Chem Soc 130:15332–15339CrossRefGoogle Scholar
  42. 42.
    Lebedeva NP, Rodes A, Feliu JM, Koper MTM, Van Santen RA (2002) J Phys Chem B 106:12938–12947CrossRefGoogle Scholar
  43. 43.
    Jeon H, Zhang Y, McGinn PJ (2010) Electrochim Acta 55:5318–5325CrossRefGoogle Scholar
  44. 44.
    Capon A, Parsons R (1973) J Electroanal Chem 45:205CrossRefGoogle Scholar
  45. 45.
    Miki A, Ye S, Osawa M, (2002) Chem Commun 1500Google Scholar
  46. 46.
    Cuesta A, Escudero M, Lanova B, Baltruschat H (2009) Langmuir 25:6500CrossRefGoogle Scholar
  47. 47.
    Lović JD, Tripković AV, Gojković SLJ, Popović KD, Tripković DV, Olszewski P, Kowal A (2005) J Electroanal Chem 581:294–302CrossRefGoogle Scholar
  48. 48.
    Topalov AA, Cherevko S, Zeradjanin AR, Meier JC, Katsounaros I, Mayrhofer KJJ (2014) Chem Sci 5:631–638CrossRefGoogle Scholar
  49. 49.
    Kolotyrkin YM, Losev VV, Chemodanov AN (1988) Mater Chem Phys 19:1–95CrossRefGoogle Scholar
  50. 50.
    Mitsushima S, Koizumi Y, Uzuka S, Ota K-I (2008) Electrochim Acta 54:455–460CrossRefGoogle Scholar
  51. 51.
    Topalov AA, Katsounaros I, Auinger M, Cherevko S, Meier JC, Klemm SO, Mayrhofer KJJ (2012) Angew Chem Int Ed 51:12613–12615CrossRefGoogle Scholar
  52. 52.
    Inzelt G, Berkes B, Kriston A, Szekely A (2011) J Solid State Electrochem 15:901–915CrossRefGoogle Scholar
  53. 53.
    Fayette M, Nutariya J, Vasiljević N, Dimitrov N (2013) ACS Catal 3:1709–1718CrossRefGoogle Scholar
  54. 54.
    Zhang X, Galindo HM, Garces HF, Baker P, Wang X, Pasaogullari U, Suib SL, Molter T (2010) J Electrochem Soc 157:B409–B414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. D. Lović
    • 1
  • S. I. Stevanović
    • 1
  • D. V. Tripković
    • 1
  • A. V. Tripković
    • 1
  • R. M. Stevanović
    • 1
  • V. M. Jovanović
    • 1
  • K. Dj. Popović
    • 1
  1. 1.ICTM-Department of ElectrochemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations