Skip to main content
Log in

Anodic dissolution of brass and dezincing-resistant brass investigated using channel flow double electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic dissolution mechanism of brass and dezincing-resistant brass in an electrolyte solution of 0.5 M NaCl containing 0.5 mM NaHCO3 was investigated using a channel flow double electrode (CFDE). CFDE is useful for investigating the anodic dissolution mechanisms of various metals because the valence of the ions dissolved from a metal working electrode can be determined by arranging a detecting electrode downstream from the working electrode. We measured the dissolution currents of cuprous ions (i Cu(I)) and cupric ions (i Cu(II)) during the measurement of the anodic polarization of brass and dezincing-resistant brass, from which we determined the potential ranges for the preferential dissolution of Zn (region (I)) and simultaneous dissolution of Cu and Zn (region (II)). The dissolution efficiency (ϕ Cu) was estimated using the anodic dissolution current of the working electrode (i W), i Cu(I), and i Cu(II), which was defined as the ratio of (i Cu(I) + i Cu(II)) and i W. ϕ Cu of brass at 0.1 and 0.2 V vs. SSE was low compared to the composition ratio of the Cu contained in the brass. This indicated that the dissolution of brass in region (II) was strongly related to the preferential dissolution of Zn from the brass surface. In contrast, the ϕ Cu of dezincing-resistant brass at 0.1 V vs. SSE was nearly identical to that at 0.2 V vs. SSE. This demonstrated that the simultaneous dissolution of Cu and Zn from the surface of dezincing-resistant brass occurred in region (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sugawara H, Ebiko H (1967) Dezincification of brass. Corros Sci 7(8):513–523

    Article  CAS  Google Scholar 

  2. Japan Brass Makers Association Technical Standard, (2007) Testing and evaluation method for dezincification corrosion of brass materials, T-303

  3. Pickering H, Wagner C (1967) Electrolytic dissolution of binary alloys containing a noble metal. J Electrochem Soc 114(7):698–706

    Article  CAS  Google Scholar 

  4. Feller HG (1968) Selective corrosion with disc electrodes in a Cu-Zn system using sulfuric acid. Corros Sci 8(4):259–269

    Article  CAS  Google Scholar 

  5. Pickering H (1968) Volume diffusion during anodic dissolution of a binary alloy. J Electrochem Soc 115(2):143–147

    Article  CAS  Google Scholar 

  6. Pickering H (1968) Surface roughening of a Cu-Au alloy during electrolytic dissolution. J Electrochem Soc 115(7):690–694

    Article  CAS  Google Scholar 

  7. Pickering H, Byrne PJ (1969) Partial currents during anodic dissolution of Cu-Zn alloys at constant potential. J Electrochem Soc 116(11):1492–1496

    Article  CAS  Google Scholar 

  8. Ereneta VG (1979) New thermogalvanic method determines the conditions which cause dezincification of admiralty brass in field service. Corros Sci 19(7):507–520

    Article  CAS  Google Scholar 

  9. Pchelnikov AP, Sitnikov AD, Marshakov IK, Losev VV (1981) A study of the kinetics and mechanism of brass dezincification by radiotracer and electrochemical methods. Electrochim Acta 26(5):591–600

    Article  CAS  Google Scholar 

  10. Polunin AV, Pchelnikov AP, Losev VV, Marshakov IK (1982) Electrochemical studies of the kinetics and mechanism of brass dezincification. Electrochim Acta 27(4):467–475

    Article  CAS  Google Scholar 

  11. Pryor MJ, Giam KK (1982) The effect of arsenic on the dealloying of alpha-brass. J Electrochem Soc 129(10):2157–2163

    Article  CAS  Google Scholar 

  12. Pryor MJ, Fister JC (1984) The mechanism of dealloying of copper solid-solutions and intermetallic phases. J Electrochem Soc 131(6):1230–1235

    Article  CAS  Google Scholar 

  13. Dacosta SLFA, Agostinho SML, Nobe K (1993) Rotating-ring-disk electrode studies of Cu-Zn alloy electrodissolution in 1 M HCl—effect of benzotriazole. J Electrochem Soc 140(12):3483–3488

  14. Maurice V, Klein LH, Strehblow HH, Marcus P (2003) In situ STM study of the initial stages of anodic oxidation of Cu-(111) in the presence of sulfates. J Electrochem Soc 150(7):B316–B324

    Article  CAS  Google Scholar 

  15. Milosev I, Strehblow HH (2003) Electrochemical behavior of Cu-xZn alloys in borate buffer solution at pH 9.2. J Electrochem Soc 150(11):B517–B524

    Article  CAS  Google Scholar 

  16. Hoshi Y, Yoshida T, Nishikata A, Tsuru T (2011) Dissolution of Pt–M (M: Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution. Electrochim Acta 56(15):5302–5309

    Article  CAS  Google Scholar 

  17. Hoshi Y, Ozawa R, Tada E, Nishikata A, Tsuru T (2012) Selective dissolution of binary Pt–Co alloys of different compositions in sulphuric acid solution. Corros Sci 65:512–519

    Article  CAS  Google Scholar 

  18. Hoshi Y, Tada E, Nishikata A, Tsuru T (2012) Effect of potential cycling on dissolution of equimolar Pt–M (M: Co, Ni, Fe) alloys in sulfuric acid solution. Electrochim Acta 85:268–272

    Article  CAS  Google Scholar 

  19. Ooi A, Hoshi Y, Tada E, Nishikata A (2014) Selective dissolution of Pt-Co binary alloys and surface enrichment of platinum in sulfuric acid solution. Mater Trans 55(8):1350–1355

    Article  CAS  Google Scholar 

  20. Itagaki M, Tagaki M, Watanabe K (1996) Study of dissolution mechanisms of copper in perchloric acid solution containing NaCl by channel flow double electrode and electrochemical quartz crystal microbalance. Corros Sci 38(7):1109–1125

    Article  CAS  Google Scholar 

  21. Tsuru T (1991) Anodic-dissolution mechanisms of metals and alloys. Mat Sci Engi-Struct Mat Proper Microstruct Process 146(1–2):1–14

    Article  Google Scholar 

  22. Itagaki M, Honda H, Hagiwara K, Kosaka Y, Kisaragi T (2010) Corrosion property of dezincing-resistant brass in fresh water. Zairyo-to-Kankyo 59:43–49

    Article  Google Scholar 

  23. Itagaki M, Watanabe K (2006) Detection of copper ions on the dissolution of brass by channel flow double electrode. J JRICu 45(1):195–199

    CAS  Google Scholar 

  24. Itagaki M, Shitanda I, Watanabe K (2008) Cannel flow double electrode study on anodic dissolution of dezincing resistant-brass. J JRICu 47(1):255–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinao Hoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshi, Y., Itagaki, M., Tabei, K. et al. Anodic dissolution of brass and dezincing-resistant brass investigated using channel flow double electrode. J Solid State Electrochem 19, 3551–3557 (2015). https://doi.org/10.1007/s10008-015-2840-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2840-9

Keywords

Navigation