Journal of Solid State Electrochemistry

, Volume 19, Issue 9, pp 2793–2801 | Cite as

Conductivity and electrochemical behavior of Li1-x Fe1-2x (MIIMIII) x PO4 with olivine structure

  • Roman Kapaev
  • Svetlana Novikova
  • Tatiana Kulova
  • Alexander Skundin
  • Andrey Yaroslavtsev
Original Paper


Lithium iron phosphates with olivine structure doped by trivalent cations and co-doped by divalent and trivalent cations of the compositions Li1-x Fe1-x MIII x PO4 (MIII = Al, Cr, Ga, Y, In) and Li1-x Fe1-2x (NiMIII) x PO4 (MIII = Al, In) were prepared by the sol-gel method. Structure, morphology, and conductivity of the prepared materials were studied by the X-ray diffraction analysis, scanning electron microscopy, and impedance spectroscopy. The solubility of M3+ cations in LiFePO4 with olivine structure was estimated. Single-phase samples were shown to be preserved at x ≤ 0.05 for Cr3+ and Al3+ cations, at x ≤ 0.02 for In3+, and at x ≤ 0.005 for Ga3+ and Y3+ cations. The materials doped with M3+ and co-doped with both M2+ and M3+ cations were characterized by a higher ionic conductivity and by a lower activation energy of ionic conductivity. Carbon-coated materials Li0.995Fe0.99(NiM)0.005PO4/C (MIII = Al, In) were prepared, and their electrochemical behavior was studied using the charge/discharge tests. Due to LiFePO4 co-doping with M2+ and M3+ cations, capacity slightly decreases but the charge/discharge rate increases.


Cathode materials Lithium ion battery Lithium iron phosphate Doping Ion conductivity Rate capability 



This research was supported by the Ministry of Education and Science of the Russian Federation (Project no. 14.604.21.0126, unique identifier RFMEFI60414X0126).


  1. 1.
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gautier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 98:503–507CrossRefGoogle Scholar
  2. 2.
    Fragner S, Cras FL, Bourbon C, Rouault H (2003) Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J Power Sources 119–121:252–257Google Scholar
  3. 3.
    Weinstock IB (2002) Recent advances in the US Department of Energy’s energy storage technology research and development programs for hybrid electric and electric vehicles. J Power Sources 110:471–474CrossRefGoogle Scholar
  4. 4.
    Li Z, Zhang D, Yang F (2009) Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J Mater Sci 44:2435–2443CrossRefGoogle Scholar
  5. 5.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRefGoogle Scholar
  6. 6.
    Yamada A, Koizumi H, Nishimura S-I, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y (2006) Room-temperature miscibility gap in LixFePO4. Nature 5:357–360CrossRefGoogle Scholar
  7. 7.
    Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Size effects on carbon-free LiFePO4 powders the key to superior energy density. Electrochem Solid-State Lett 9(7):A352–A355CrossRefGoogle Scholar
  8. 8.
    Lu Z, Chen H, Robert R, Zhu BY, Deng J, Wu L, Chung CY, Grey CP (2011) Citric acid-and ammonium-mediated morphological transformations of olivine LiFePO4 particles. Chem Mater 23(11):2848–2859CrossRefGoogle Scholar
  9. 9.
    Wang L, He X, Sun W, Wang J, Li Y, Fan S (2012) Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett 12(11):5632–5636CrossRefGoogle Scholar
  10. 10.
    Paolella A, Bertoni G, Marras S, Dilena E, Colombo M, Prato M, Riedinger A, Povia M, Ansaldo A, Zaghib K (2014) Etched colloidal LiFePO4 nanoplatelets toward high-rate capable li-ion battery electrodes. Nano Lett 14(12):6828–6835CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate li-ion batteries. Nano Lett 14(5):2849–2853CrossRefGoogle Scholar
  12. 12.
    Shin HC, Cho WI, Jang H (2006) Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J Power Sources 159:1383–1388CrossRefGoogle Scholar
  13. 13.
    Bhuvaneswari M, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W (2008) Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries. J Power Sources 180(1):553–560CrossRefGoogle Scholar
  14. 14.
    Toprakci O, Ji L, Lin Z, Toprakci HA, Zhang X (2011) Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. J Power Sources 196(18):7692–7699CrossRefGoogle Scholar
  15. 15.
    Yang J, Wang J, Wang D, Li X, Geng D, Liang G, Gauthier M, Li R, Sun X (2012) 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J Power Sources 208:340–344CrossRefGoogle Scholar
  16. 16.
    Wu H, Liu Q, Guo S (2014) Composites of graphene and LiFePO4 as cathode materials for lithium-ion battery: a mini-review. Nano Micro Lett 6(4):316–326CrossRefGoogle Scholar
  17. 17.
    Safronov DV, Novikova SA, Skundin AM, Yaroslavtsev AB (2011) Lithium intercalation and deintercalation processes in Li4Ti5O12 and LiFePO4. Inorg Mater 48(1):57–61CrossRefGoogle Scholar
  18. 18.
    Benoit C, Franger S (2008) Chemistry and electrochemistry of lithium iron phosphate. J Solid State Electrochem 12(7–8):987–993CrossRefGoogle Scholar
  19. 19.
    Novikova S, Yaroslavtsev S, Rusakov V, Kulova T, Skundin A, Yaroslavtsev A (2014) LiFe1−xMII xPO4/C (MII = Co, Ni, Mg) as cathode materials for lithium-ion batteries. Electrochim Acta 122:180–186CrossRefGoogle Scholar
  20. 20.
    Gaoa H, Jiao L, Yanga J, Qia Z, Wanga Y, Yuana H (2013) High rate capability of Co-doped LiFePO4/C. Electrochim Acta 97:143–149CrossRefGoogle Scholar
  21. 21.
    Roberts MR, Vitins G, Owen JR (2008) High-throughput studies of Li1−xMgx/2FePO4 and LiFe1−yMgyPO4 and the effect of carbon coating. J Power Sources 179(2):754–762CrossRefGoogle Scholar
  22. 22.
    Cho Y-D, Fey GT-K, Kao H-M (2008) Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J Solid State Electrochem 12(7–8):815–823CrossRefGoogle Scholar
  23. 23.
    Gao H, Jiao L, Peng W, Liu G, Yang J, Zhao Q, Qi Z, Si Y, Wang Y, Yuan H (2011) Enhanced electrochemical performance of LiFePO4/C via Mo-doping at Fe site. Electrochim Acta 56(27):9961–9967CrossRefGoogle Scholar
  24. 24.
    Sun C, Zhou Z, Xu Z, Wang D, Wei J, Bian X, Yan J (2009) Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J Power Sources 193(2):841–845CrossRefGoogle Scholar
  25. 25.
    Chung SY, Choi SY, Yamamoto T, Ikuhara Y (2009) Orientation‐dependent arrangement of antisite defects in lithium iron (II) phosphate crystals. Angew Chem Int Ed 48(3):543–546CrossRefGoogle Scholar
  26. 26.
    Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130(1–2):41–52CrossRefGoogle Scholar
  27. 27.
    Kröger F, Vink H (1954) Physico-chemical properties of diatomic crystals in relation to the incorporation of foreign atoms with deviating valency. Physica 20(7):950–964CrossRefGoogle Scholar
  28. 28.
    Zhao R-R, Lan B-Y, Chen H-Y, Ma G-Z (2012) Hydrothermal synthesis and properties of manganese-doped LiFePO4. Ionics 18(9):873–879CrossRefGoogle Scholar
  29. 29.
    Ni JF, Zhou HH, Chen JT, Zhang XX (2005) LiFePO4 doped with ions prepared by co-precipitation method. Mater Lett 59(18):2361–2365CrossRefGoogle Scholar
  30. 30.
    Liu H, Cao Q, Fu LJ, Li C, Wu YP, Wu HQ (2006) Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem Commun 8(10):1553–1557CrossRefGoogle Scholar
  31. 31.
    Paolella A, Bertoni G, Dilena E, Marras S, Ansaldo A, Manna L, George C (2014) Redox centers evolution in phospho-olivine type (LiFe0.5Mn0.5PO4) nanoplatelets with uniform cation distribution. Nano Lett 14(3):1477–1483CrossRefGoogle Scholar
  32. 32.
    Örnek A, Bulut E, Can M, Özacar M (2013) Characteristics of nanosized LiNixFe1−xPO4/C (x = 0.00–0.20) composite material prepared via sol–gel-assisted carbothermal reduction method. J Solid State Electrochem 17(12):3101–3107. doi: 10.1007/s10008-013-2201-5 CrossRefGoogle Scholar
  33. 33.
    Wang D, Wang Z, Huang X, Chen L (2005) Continuous solid solutions LiFe1−xCoxPO4 and its electrochemical performance. J Power Sources 146(1):580–583CrossRefGoogle Scholar
  34. 34.
    Novikova SA, Yaroslavtsev SA, Rusakov VS, Kulova TL, Skundin AM, Yaroslavtsev AB (2013) Lithium intercalation and deintercalation into lithium–iron phosphates doped with cobalt. Mendeleev Commun 23(5):251–252CrossRefGoogle Scholar
  35. 35.
    Ge Y, Yan X, Liu J, Zhang X, Wang J, He X, Wang R, Xie H (2010) An optimized Ni doped LiFePO4/C nanocomposite with excellent rate performance. Electrochim Acta 55:5886–5890CrossRefGoogle Scholar
  36. 36.
    Zhang W, Hu Y, Tao X, Huang H, Gan Y, Wang C (2010) Synthesis of spherical LiFePO4/C via Ni doping. J Phys Chem Solids 71(9):1196–1200CrossRefGoogle Scholar
  37. 37.
    Shi S, Liu L, Ouyang C, Wang D-S, Wang Z, Chen L, Huang X (2003) Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B 68Google Scholar
  38. 38.
    Abbate M, Lala S, Montoro L, Rosolen J (2005) Ti-, Al-, and Cu-doping induced gap states in LiFePO4. Electrochem Solid-State Lett 8(6):A288–A290CrossRefGoogle Scholar
  39. 39.
    Ouyang C, Shi S, Wang Z, Li H, Huang X, Chen L (2004) The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. J Phys Condens Matter 16(13):2265CrossRefGoogle Scholar
  40. 40.
    Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien C (2009) Nonstoichiometric LiFePO4: defects and related properties. Chem Mater 21(8):1636–1644CrossRefGoogle Scholar
  41. 41.
    Herle PS, Ellis B, Coombs N, Nazar L (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3(3):147–152CrossRefGoogle Scholar
  42. 42.
    Chen L, Xie J, Yu H, Wang T (2008) Si–Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries. Electrochim Acta 53(28):8149–8153CrossRefGoogle Scholar
  43. 43.
    Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Сhem Mater 17(20):5085–5092CrossRefGoogle Scholar
  44. 44.
    Shannon Rt (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Cryst Phys, Diffr, Theor Gen Crystallogr 32(5):751–767CrossRefGoogle Scholar
  45. 45.
    Svitan'ko A, Scopets V, Novikova S, Yaroslavtsev A (2014) The effect of composite formation with oxides on the ion conductivity of NASICON-Type LiTi2(PO4)3 and olivine-type LiFePO4. Solid State Ionics. doi: 10.1016/j.ssi.2014.10.022
  46. 46.
    Hebb MH (1952) Electrical conductivity of silver sulfide. J Chem Phys 20(1):185–190CrossRefGoogle Scholar
  47. 47.
    Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10:3–16CrossRefGoogle Scholar
  48. 48.
    Riess I (1996) Review of the limitation of the Hebb-Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors. Solid State Ionics 91(3):221–232CrossRefGoogle Scholar
  49. 49.
    Riess I (2003) Mixed ionic–electronic conductors—material properties and applications. Solid State Ionics 157(1):1–17CrossRefGoogle Scholar
  50. 50.
    Amin R, Maier J, Balaya P, Chen D, Lin C (2008) Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics 179(27):1683–1687CrossRefGoogle Scholar
  51. 51.
    Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1):45–51CrossRefGoogle Scholar
  52. 52.
    Liu H, Li C, Zhang H, Fu L, Wu Y, Wu H (2006) Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J Power Sources 159(1):717–720CrossRefGoogle Scholar
  53. 53.
    Tang K, Yu X, Sun J, Li H, Huang X (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta 56(13):4869–4875CrossRefGoogle Scholar
  54. 54.
    Zhang S, Zhang J, Xu S, Yuan X, He B (2013) Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries. Electrochim Acta 88:287–293CrossRefGoogle Scholar
  55. 55.
    Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J-B, Morcrette M, Tarascon J-M, Masquelier C (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M= Fe, Mn) electrode materials. J Electrochem Soc 152(5):A913–A921CrossRefGoogle Scholar
  56. 56.
    Amin R, Maier J (2008) Effect of annealing on transport properties of LiFePO4: towards a defect chemical model. Solid State Ionics 178(35):1831–1836CrossRefGoogle Scholar
  57. 57.
    Park K-Y, Park I, Kim H, Lim H-D, Hong J, Kim J, Kang K (2014) Anti-site reordering in LiFePO4: defect annihilation on charge carrier injection. Chem Mater 26(18):5345–5351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Roman Kapaev
    • 1
  • Svetlana Novikova
    • 1
  • Tatiana Kulova
    • 2
  • Alexander Skundin
    • 2
  • Andrey Yaroslavtsev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of ScienceMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations