Journal of Solid State Electrochemistry

, Volume 19, Issue 5, pp 1523–1533 | Cite as

LiNi1/3Co1/3Mn1/3O2 coated by Al2O3 from urea homogeneous precipitation method: improved Li storage performance and mechanism exploring

  • Dongdong Shen
  • Dawei ZhangEmail author
  • Jianwu WenEmail author
  • Daoming Chen
  • Xiaojun He
  • Yunjin Yao
  • Xueliang Li
  • Caigan Duger
Original Paper


Layered LiNi1/3Co1/3Mn1/3O2 has been successfully coated with a uniform Al2O3 film through an homogeneous precipitation method with urea as a precipitant. The bare and Al2O3-coated LiNi1/3Co1/3Mn1/3O2 samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and electrochemical charge/discharge tests. For the 1 % Al2O3-coated LiNi1/3Co1/3Mn1/3O2 sample, XRD results show that it possesses the best hexagonal layered crystal structure with the lowest cation mixing among all samples, and SEM and TEM images show a uniform and amorphous Al2O3 layer (~13 nm) formed on the LiNi1/3Co1/3Mn1/3O2 surface. Compared with bare sample, it exhibits superior electrochemical performance including the highest initial coulombic efficiency (92.1 %), high discharge capacity (202.6 mAh g−1 at 0.1 C), excellent cycling performance (92 % at the 100th cycle, 0.5 C), and rate performance. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS) are used to aid to reveal the functional mechanism, and the results show that the improving on the electrochemical performance after Al2O3 coating can be attributed to the suppressed electrolyte (LiPF6 or solvents) decomposition reaction on the cathode/electrolyte interface and thus reduced interfacial impedance value and impedance growth speed with cycling.


Lithium-ion batteries LiNi1/3Co1/3Mn1/3O2 Al2O3 coated Electrochemical performance 



Dawei Zhang thanks the National Natural Science Foundation of China (No. 51472070) and the Natural Science Research Project from the Education Department of Anhui Province (No. 2009AJZR0603 and 2012AJZR0035). Jianwu Wen acknowledges the Research Fund for the Doctoral Program of Southwest University of Science and Technology (No. 14zx7150) and the open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (No. 11zxfk26). Xiaojun He thanks the National Natural Science Foundation of China (No. 51272004 and U1361110).


  1. 1.
    Choi J, Manthiram A (2005) Role of chemical and structural stabilities on the electrochemical properties of layered LiNi1/3Mn1/3Co1/3O2 cathodes. J Electrochem Soc 152:A1714–A1718CrossRefGoogle Scholar
  2. 2.
    Manthiram A, Kim J (1998) Low temperature synthesis of insertion oxides for lithium batteries. Chem Mater 10:2895–2909CrossRefGoogle Scholar
  3. 3.
    Guo R, Shi P, Cheng X, Du C (2009) Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route. J Alloys Compd 473:53–59CrossRefGoogle Scholar
  4. 4.
    Wu F, Wang M, Su Y, Bao L, Chen S (2010) A novel method for synthesis of layered LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362–2367CrossRefGoogle Scholar
  5. 5.
    Park J, Seo JH, Plett G, Lu W, Sastry AM (2011) Numerical simulation of the effect of dissolution of LiMn2O4 particles on Li-ion battery performance. Electrochem Solid-State Lett 14:14–18CrossRefGoogle Scholar
  6. 6.
    Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3883CrossRefGoogle Scholar
  7. 7.
    Riley LA, Atta SV, Cavanagh AS, Yan Y, George SM, Liu P, Dillon AC, Lee SH (2011) Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J Power Sources 196:3317–3324CrossRefGoogle Scholar
  8. 8.
    Kim HS, Kim KT, Kim YS, Martin SW (2008) Effect of a surface treatment for LiNi1/3Co1/3Mn1/3O2 cathode material in lithium secondary batteries. Met Mater Int 14:105–109CrossRefGoogle Scholar
  9. 9.
    Araki K, Taguchi N, Sakaebe H, Tatsumi K, Ogumi Z (2014) Electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material modified by coating with Al2O3 nanoparticles. J Power Sources 269:236–243CrossRefGoogle Scholar
  10. 10.
    Myung ST, Izumi K, Komaba S, Yashiro H, Bang HJ, Sun YK, Kumagai N (2007) Functionality of oxide coating for Li [Li0.05Ni0.4Co0.15Mn0.4] O2 as positive electrode materials for lithium-ion secondary batteries. J Phys Chem C 111:4061–4067CrossRefGoogle Scholar
  11. 11.
    Wu F, Wang M, Su Y, Chen S, Xu B (2009) Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2. J Power Sources 191:628–632CrossRefGoogle Scholar
  12. 12.
    Liu X, He P, Li H, Ishida M, Zhou H (2013) Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. J Alloys Compd 552:76–82CrossRefGoogle Scholar
  13. 13.
    Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569CrossRefGoogle Scholar
  14. 14.
    Wu F, Wang M, Su YF, Chen S (2009) Surface modification of LiNi1/3Co1/3Mn1/3O2 with Y2O3 for lithium-ion battery. J Power Sources 189:743–747CrossRefGoogle Scholar
  15. 15.
    Shi SJ, Tu JP, Mai YJ, Zhang YQ, Tang YY, Wang XL (2012) Structure and electrochemical performance of CaF2 coated LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries. Electrochim Acta 83:105–112CrossRefGoogle Scholar
  16. 16.
    Wang H, Tang A, Huang K, Liu S (2010) Uniform AlF3 thin layer to improve rate capacity of LiNi1/3Co1/3Mn1/3O2 materials for Li-ion batteries. T Nonferr Metal Soc 20:803–808CrossRefGoogle Scholar
  17. 17.
    Wang JH, Wang Y, Guo YZ, Ren ZY, Liu CW (2013) Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials. J Mater Chem A 1:4879–4884CrossRefGoogle Scholar
  18. 18.
    Wang C, Chen L, Zhang H, Yang Y, Wang F, Yin F, Yang G (2014) Li2ZrO3 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries. Electrochim Acta 119:236–242CrossRefGoogle Scholar
  19. 19.
    Huang Y, Chen J, Cheng F, Wan W, Liu W, Zhou H (2010) A modified Al2O3 coating process to enhance the electrochemical performance of Li (Ni1/3Co1/3Mn1/3) O2 and its comparison with traditional Al2O3 coating process. J Power Sources 195:8267–8274CrossRefGoogle Scholar
  20. 20.
    Wang QY, Liu J, Murugan AV, Manthiram A (2009) High capacity double-layer surface modified Li [Li0.2Mn0.54Ni0.13Co0.13] O2 cathode with improved rate capability. J Mater Chem 19:4965–4972CrossRefGoogle Scholar
  21. 21.
    Wu Y, Zhou L, Ming J, Yu Y, Zhao F (2013) Coating of Al2O3 on layered Li (Mn1/3Ni1/3Co1/3) O2 using CO2 as green precipitant and their improved electrochemical performance for lithium ion batteries. J Energ Chem 22:468–476CrossRefGoogle Scholar
  22. 22.
    Cheng HM, Wang FM, Chu JP, Santhanam R, Rick J, Lo SC (2012) Enhanced cycleabity in lithium ion batteries: resulting from atomic layer deposition of Al2O3 or TiO2 on LiCoO2 electrodes. J Phys Chem C 116:7629–7637CrossRefGoogle Scholar
  23. 23.
    Zhao J, Wang Y (2012) Ultrathin surface coatings for improved electrochemical performance of lithium ion battery electrodes at elevated temperature. J Phys Chem C 116:11867–11876CrossRefGoogle Scholar
  24. 24.
    Shao C, Zhou G, Li Z, Wu Y, Xu D, Sun B (2013) Fabrication of large-diameter tube-like mesoporous TiO2 via homogeneous precipitation and photocatalytic decomposition of papermaking wastewater. Chem Eng J 230:227–235CrossRefGoogle Scholar
  25. 25.
    Baneshi J, Haghighi M, Jodeiri N, Abdollahifar M, Ajamein H (2014) Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications. Energy Convers Manage 87:928–937CrossRefGoogle Scholar
  26. 26.
    Shin HS, Park SH, Bae YC, Sun YK (2005) Synthesis of LiNi0.475Co0.05Mn0.475O2 cathode materials via a carbonate process. Solid State Ion 176:2577–2581CrossRefGoogle Scholar
  27. 27.
    Yin K, Fang W, Zhong B, Guo X, Tang Y, Nie X (2012) The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2 cathode material via a carbonate co-precipitation method. Electrochim Acta 85:99–103CrossRefGoogle Scholar
  28. 28.
    Lin YK, Lu CH (2009) Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3-yAlyO2. J Power Sources 189:353–358CrossRefGoogle Scholar
  29. 29.
    Wu F, Wang M, Su Y, Bao L, Chen S (2010) A novel layered material of LiNi0.32Mn0.33Co0.33Al0.01O2 for advanced lithium-ion batteries. J Power Sources 195:2900–2904CrossRefGoogle Scholar
  30. 30.
    Kim HS, Kim Y, Kim SI, Martin SW (2006) Enhanced electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material by coating with LiAlO2 nanoparticles. J Power Sources 161:623–627CrossRefGoogle Scholar
  31. 31.
    Kosova NV, Devyatkina ET, Kaichev VV (2007) Optimization of Ni2+/Ni3+ ratio in layered Li (Ni, Mn, Co) O2 cathodes for better electrochemistry. J Power Sources 174:965–969CrossRefGoogle Scholar
  32. 32.
    Manikandan P, Periasamy P, Jagannathan R (2014) Faceted shape-drive cathode particles using mixed hydroxy-carbonate precursor for mesocarbon microbeads versus LiNi1/3Mn1/3Co1/3O2 Li-ion pouch cell. J Power Sources 245:501–509CrossRefGoogle Scholar
  33. 33.
    Wei Y, Kim KB, Chen G (2006) Evolution of the local structure and electrochemical properties of spinel LiNixMn2-xO4 (0≤x≤0.5). Electrochim Acta 51:3365–3373CrossRefGoogle Scholar
  34. 34.
    Kobayashi H, Okumura T, Shikano M, Takada K, Arachi Y, Nitani H (2014) The effects of Al2O3 coating on the performance of layered Li1.20Mn0.55Ni0.16Co0.09O2 materials for lithium-ion rechargeable battery. Solid State Ion 262:43–48CrossRefGoogle Scholar
  35. 35.
    Zhang P, Zhang L, Ren X, Yuan Q, Liu J, Zhang Q (2011) Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2-PPy composites cathode materials for lithium-ion battery. Synth Met 161:1092–1097CrossRefGoogle Scholar
  36. 36.
    Kim GH, Myung ST, Kim HS, Sun YK (2006) Synthesis of spherical Li [Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz] O2 as positive electrode material for lithium-ion battery. Electrochim Acta 51:2447–2453CrossRefGoogle Scholar
  37. 37.
    Li D, Kato Y, Kobayakawa K, Noghchi H, Sato Y (2006) preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 coated with metal oxides coating. J Power Sources 160:1342–1348CrossRefGoogle Scholar
  38. 38.
    Kim Y, Kim HS, Martin SW (2006) Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries. Electrochim Acta 52:1316–1322CrossRefGoogle Scholar
  39. 39.
    Kim HS, Kim YS, Kim SI, Martin SW (2007) Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 with Al2O3 nano-particle coating. Mater Sci Forum 539:1122–1127CrossRefGoogle Scholar
  40. 40.
    Shi SJ, Tu YP, Tang YY, Zhang YQ, Liu XY, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346CrossRefGoogle Scholar
  41. 41.
    Verdier S, El Ouatani L, Dedryvère R, Bonhomme F, Biensan P, Gonbeau D (2007) XPS study on Al2O3- and AlPO4-coated LiCoO2 cathode material for high-capacity Li ion batteries. J Electrochem Soc 154:A1088–A1099CrossRefGoogle Scholar
  42. 42.
    Myung ST, Izumi K, Komaba S, Sun YK, Yashiro H, Kumagai N (2005) Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem Mater 17:3695–3704CrossRefGoogle Scholar
  43. 43.
    Nadimpalli SPV, Sethuraman VA, Dalavi S, Lucht B, Chou MJ, Shenoy VB, Guduru PR (2012) Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. J Power Sources 215:145–151CrossRefGoogle Scholar
  44. 44.
    Yang L, Ravdel B, Lucht BL (2010) Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett 13:A95–A97CrossRefGoogle Scholar
  45. 45.
    Zuo X, Fan C, Liu J, Xiao X, Wu J, Nan J (2013) Effect of tris (trimethylsilyl) borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells. J Power Sources 229:308–312CrossRefGoogle Scholar
  46. 46.
    Liu W, Wang M, Gao X, Zhang W, Chen J, Zhou H, Zhang X (2012) Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating. J Alloys Compd 543:181–188CrossRefGoogle Scholar
  47. 47.
    Bryngelsson H, Stjerndahl M, Gustafsson T, Edström K (2007) How dynamic is the SEI? J Power Sources 174:970–975CrossRefGoogle Scholar
  48. 48.
    Murakami M, Yamashige H, Arai H, Uchimoto Y, Ogumi Z (2011) Direct evidence of LiF formation at electrode/electrolyte interface by 7Li and 19F double-resonance solid-state NMR Spectroscopy. Electrochem Solid-State Lett 14:A134–A137CrossRefGoogle Scholar
  49. 49.
    Lee SH, You HG, Han KS, Kim J, Jung IH, Song JH (2014) A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode. J Power Sources 247:307–313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dongdong Shen
    • 1
  • Dawei Zhang
    • 1
    Email author
  • Jianwu Wen
    • 2
    Email author
  • Daoming Chen
    • 1
  • Xiaojun He
    • 3
  • Yunjin Yao
    • 1
  • Xueliang Li
    • 1
  • Caigan Duger
    • 1
  1. 1.School of Chemical EngineeringHefei University of TechnologyHefeiChina
  2. 2.State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  3. 3.School of Chemistry and Chemical EngineeringAnhui University of TechnologyMaanshanChina

Personalised recommendations