Journal of Solid State Electrochemistry

, Volume 19, Issue 4, pp 1133–1142 | Cite as

Modified electrolytic manganese dioxide (MEMD) for oxygen generation in alkaline medium

  • Dario DelgadoEmail author
  • Manickam Minakshi
  • Gamini Senanayake
  • Dong-Jin Kim
Original Paper


Undoubtedly, hydrogen will play an important role in the energy sector in the near future, in particular, as a fuel for transportation. However, electrolytic hydrogen generation is energy intensive and the means to save energy have been widely studied, as for example, the use of proton exchange membranes to minimize the voltage drop across the electrolyte. This research focuses in developing inexpensive alternative anode materials for oxygen generation in order to substitute expensive conventional anodes such as dimensionally stable anodes (DSA®). The geometric and electronic factors of the starting ‘electrolytic manganese dioxide (EMD) material’ are modified to enhance its electrochemical activity toward the oxygen evolution reaction. This has been achieved while using different dopants as additives during electrodeposition of MnO2. The linear voltammetry and electrochemical impedance spectroscopy (EIS) analysis showed an increase in the surface area for the modified EMD (MEMD). X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) associated with elemental analysis (energy-dispersive X-ray spectroscopy (EDS)) illustrate a change in the oxygen composition and acidity which is correlated to the changes in electronic factor of the EMD. These results elucidate the improvement in overpotential observed for MEMDs when compared to that of DSA® at the current density of 100 mA cm−2.


EMD Oxygen evolution Electrochemistry Hydrogen 



The authors would like to thank AINSE Ltd. for providing financial assistance (Award No. ALNGRA12020/10366 and AINSE Post Graduate Research Award 10595) to enable the work on the catalyst surfaces. We would also like to acknowledge the technological support from Australian Nuclear Science and Technology Organization (ANSTO) and also the global R&D Centers Program of National Research Foundation (NRF) of Korea, funded by Ministry of Science, ICT and Future Planning (MSIP) at Korean Institute of Geoscience and Mineral Resources (KIGAM), for instrument time.


  1. 1.
    Delgado D, Hefter G, Minakshi M (2013) Hydrogen generation. In: Ferreira G (ed) Alternative energies, vol 34. Springer, Berlin, pp 141–161CrossRefGoogle Scholar
  2. 2.
    Bockris JOM (1975) The solar-hydrogen alternative. Australia & New Zealand Book Co Pty Ltd, BrookvaleGoogle Scholar
  3. 3.
    Bockris JOM (1999) Hydrogen economy in the future. Int J Hydrogen Energy 24:1–15CrossRefGoogle Scholar
  4. 4.
    Gibson TL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940CrossRefGoogle Scholar
  5. 5.
    Bockris JOM, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry, vol 2A, 2nd edn. Kluwer Academic/Plenum, New YorkGoogle Scholar
  6. 6.
    El-Moneim AA, Kumagai N, Asami K, Hashimoto K (2005) Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in acidic seawater electrolysis. Mater Trans 46(2):309–316CrossRefGoogle Scholar
  7. 7.
    Fujimura K, Izumiya K, Kawashima A, Akiyama E, Habazaki H, Kumagai N, Hashimoto K (1999) Anodically deposited manganese-molybdenum oxide anodes with high selectivity for evolving oxygen in electrolysis of seawater. J Appl Electrochem 29:765–771CrossRefGoogle Scholar
  8. 8.
    Fujimura K, Matsui T, Habazaki H, Kawashima A, Kumagai N, Hashimoto K (2000) The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochim Acta 45:2297–2303CrossRefGoogle Scholar
  9. 9.
    Morita M, Iwakura C, T H (1979) The anodic characteristics of massive manganese oxide electrode. Electrochim Acta 24:357–362CrossRefGoogle Scholar
  10. 10.
    Matsui T, Habazaki H, Kawashima A, Asami K, Kumagai N, Hashimoto K (2002) Anodically deposited manganese-molybdenum-tungsten oxide anodes for oxygen evolution in seawater electrolysis. J Appl Electrochem 32:993–1000CrossRefGoogle Scholar
  11. 11.
    Matsumoto Y, Yamada S, Nishida T, Sato E (1980) Oxygen evolution on La1 − xSrxFe1 − yCoyO3 series oxides. J Electrochem Soc 127(11):2360–2364CrossRefGoogle Scholar
  12. 12.
    Bockris JOM, Otagawa T (1983) Mechanism of oxygen evolution on perovskites. J Phys Chem 87:2960–2971CrossRefGoogle Scholar
  13. 13.
    Bocca C, Cerisola G, Magnone E, Barbucci A (1999) Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution. Int J Hydrogen Energy 24(8):699–707CrossRefGoogle Scholar
  14. 14.
    Singh RN, Lal B (2002) High surface area lanthanum cobaltate and its A and B sites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution. Int J Hydrogen Energy 27(1):45–55CrossRefGoogle Scholar
  15. 15.
    Krasilshchikov AI (1963) Intermediate stages of anodic oxygen evolution. Russ J Phys Chem 37:273Google Scholar
  16. 16.
    Kobussen AGC, Broers GHJ (1980) The oxygen evolution on La0.5Ba0.5CoO3: theoretical impedance behaviour for a multi-step mechanism involving two adsorbates. J Electroanal Chem Interfacial Electrochem 126(1–3):221–240Google Scholar
  17. 17.
    Willems H, Kobussen AGC, Wit JHWD, Broers GHJ (1984) The oxygen evolution reaction on cobalt: part I. Reaction order experiments and impedance measurements. J Electroanal Chem Interfacial Electrochem 170(1–2):227–242CrossRefGoogle Scholar
  18. 18.
    O’Grady W, Iwakura C, Huang J, Yeager E (1974) Ruthenium oxide catalysts for the oxygen electrode. In: Breiter MW (ed) Proc Symp Electrocatal pp 286-302Google Scholar
  19. 19.
    O’Grady WE, Iwakura C, Yeager E (1976) Oxygen electrocatalysts for life support systems. Am Soc Mech Eng 1976 (76-ENAs-37):11Google Scholar
  20. 20.
    Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Norskov JK (2007) Electrolysis of water on oxides surfaces. J Electroanal Chem 607:83–89CrossRefGoogle Scholar
  21. 21.
    Dau H, Limberg C, Reier T, Rish M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761CrossRefGoogle Scholar
  22. 22.
    Marinia S, Salvi P, Nelli P, Pesentia R, Villa M, Berrettoni M, Zangaric G, Kiros Y (2012) Advanced alkaline water electrolysis. Electrochim Acta 82:384–391CrossRefGoogle Scholar
  23. 23.
    Bockris JOM (1956) Kinetics of activation-controlled consecutive electrochemical reactions: anodic evolution of oxygen. J Chem Phys 817–827Google Scholar
  24. 24.
    Hu J-M, Zhang J-Q, Cao C-N (2004) Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of tafel lines and EIS. Int J Hydrogen Energy 29:791–797CrossRefGoogle Scholar
  25. 25.
    Doyle RL, Lyons MEG (2013) An electrochemical impedance study of the oxygen evolution reaction at hydrous iron in base. Phys Chem Chem Phys 15:5224–5237CrossRefGoogle Scholar
  26. 26.
    Lyons MEG, Brandon MP (2009) The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J Electroanal Chem 631:62–70CrossRefGoogle Scholar
  27. 27.
    Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry, vol 32. Kluwer Academic/Plenum, New York, pp 143–248Google Scholar
  28. 28.
    Lasia A (1995) Impedance of porous electrodes. J Electroanal Chem 397:27CrossRefGoogle Scholar
  29. 29.
    Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14:397–426CrossRefGoogle Scholar
  30. 30.
    Hansen HA, Man IC, Studt F, Abild-Pedersen F, Rossmeisl J (2010) Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys Chem Chem Phys 12:283–290CrossRefGoogle Scholar
  31. 31.
    Simon DE, Morton RW, Gislason JJ (2004) A close look at electrolytic manganese dioxide (EMD) and the γ-MnO2 & ε-MnO2 phases using Rietveld modeling. Adv X-ray Anal 47:267–280Google Scholar
  32. 32.
    Chabre Y, Pannetier J (1995) Structural and electrochemical properties of the proton/gamma-MnO2 system. Prog Solid State Chem 23:1–130CrossRefGoogle Scholar
  33. 33.
    Ruetschi P (1984) Cation-vacancy model for MnO2. J Electrochem Soc 131(12):2737–2744CrossRefGoogle Scholar
  34. 34.
    Ruetschi P (1988) Influence of cation vacancies on the electrode potential of MnO2. J Electrochem Soc 135(11):2657–2663CrossRefGoogle Scholar
  35. 35.
    Ruetschi P, Giovanoli R (1988) Cation vacancies in MnO2 and their influence on electrochemical reactivity. J Electrochem Soc 135(11):2663–2669CrossRefGoogle Scholar
  36. 36.
    Nesbitt HW, Banerjee D (1998) Interpretation of XPS Mn(2p) spectra on Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dario Delgado
    • 1
    Email author
  • Manickam Minakshi
    • 1
  • Gamini Senanayake
    • 1
  • Dong-Jin Kim
    • 2
  1. 1.School of Engineering and Information TechnologyMurdoch UniversityMurdochAustralia
  2. 2.Mineral Resources Research DivisionKorea Institute of Geoscience and Mineral ResourcesDaejeonSouth Korea

Personalised recommendations