Journal of Solid State Electrochemistry

, Volume 18, Issue 12, pp 3271–3286 | Cite as

The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution

Original Paper

Abstract

The cathodic superactivation of gold using a repetitive potential cycling procedure is reported, and its significance for the oxygen evolution reaction is discussed. The superactivated surfaces exhibit a transient oxygen evolution response subsequent to monolayer oxidation and prior to extensive visible oxygen evolution. The kinetics of this oxygen evolution process are studied using a variety of transient and steady-state electrochemical techniques. The Tafel slope is shown to decrease with increased activation of the gold surface from ca. 120 to ca. 48 mV dec−1, and the charge transfer kinetics are enhanced by over three orders of magnitude for the superactivated electrodes. A mechanistic scheme involving the formation of monomeric Au(III) hydroxyl complexes of the form Au(OH)6 3− is proposed. The latter are of a transient nature and may be regarded as intermediates in the early stages of hydrous ß-oxide growth. These labile species may catalyse oxygen evolution by enhancing the formation of peroxy species that subsequently decompose with loss of oxygen gas from the surface oxide. This novel mechanistic route is in excellent agreement with recent literature studies and has the potential to unite a number of strands in the current understanding of the oxygen evolution reaction at gold surfaces.

Notes

Acknowledgements

This paper is dedicated to Prof. Stephen Fletcher on the occasion of his 65th birthday. He has truly been an inspiration to physical electrochemists for many years. This publication has emanated in part from research conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/10/IN.1/I2969.

References

  1. 1.
    Schlogl R (2010) ChemSusChem 3:209–222CrossRefGoogle Scholar
  2. 2.
    Whitesides GM, Crabtree GW (2007) Science 315:796–798CrossRefGoogle Scholar
  3. 3.
    Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) ChemCatChem 2:724–761CrossRefGoogle Scholar
  4. 4.
    Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) Energy Environ Sci 4:3167–3192CrossRefGoogle Scholar
  5. 5.
    Neburchilov V, Wang H, Martin JJ, Qu W (2010) J Power Sources 195:1271–1291CrossRefGoogle Scholar
  6. 6.
    Cheng F, Chen J (2012) Chem Soc Rev 41:2172–2192CrossRefGoogle Scholar
  7. 7.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) J Appl Electrochem 41:1137–1164CrossRefGoogle Scholar
  8. 8.
    Koper MTM (2008) Faraday Discuss 140:11–24CrossRefGoogle Scholar
  9. 9.
    Koper MTM (2011) J Electroanal Chem 660:254–260CrossRefGoogle Scholar
  10. 10.
    Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  11. 11.
    Rossmeisl J, Logadottir A, Norskov JK (2005) Chem Phys 319:178–184CrossRefGoogle Scholar
  12. 12.
    Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK (2007) J Electroanal Chem 607:83–89CrossRefGoogle Scholar
  13. 13.
    Shen X, Small YA, Wang J, Allen PB, Fernandez-Serra MV, Hybertsen MS, Muckerman JT (2010) J Phys Chem C 114:13695–13704CrossRefGoogle Scholar
  14. 14.
    Suntivich J, May KJ, Gasteiger H, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385CrossRefGoogle Scholar
  15. 15.
    Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Nat Mater 11:550–557CrossRefGoogle Scholar
  16. 16.
    Busch M, Ahlberg E, Panas I (2011) Phys Chem Chem Phys 13:15062–15068CrossRefGoogle Scholar
  17. 17.
    Su HY, Gorlin Y, Man IC, Calle-Vallejo F, Nørskov JK, Jaramillo TF, Rossmeisl J (2012) Phys Chem Chem Phys 14:14010–14022CrossRefGoogle Scholar
  18. 18.
    Zaharieva I, Chernev P, Risch M, Klingan K, Kohlhoff M, Fischerb A, Dau H (2012) Energy Environ Sci 5:7081–7089CrossRefGoogle Scholar
  19. 19.
    Risch M, Klingan K, Heidkamp J, Ehrenberg D, Chernev P, Zaharieva I, Dau H (2011) Chem Commun 47:11912–11914CrossRefGoogle Scholar
  20. 20.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  21. 21.
    Schwab GM (1981) In: Anderson JR, Boudart M (ed) Catalysis—science and technology vol. 2. Springer-Verlag, Berlin p.4Google Scholar
  22. 22.
    Bockris JOM, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry, vol. 2A, 2nd edn. Kluwer, New York, p 1275Google Scholar
  23. 23.
    Koper MTM (2009) Faraday Discuss 140:11–24CrossRefGoogle Scholar
  24. 24.
    Burke LD (2004) Gold Bull 37:125–135CrossRefGoogle Scholar
  25. 25.
    Burke LD, O’Connell AM, O’Mullane AP (2003) J Appl Electrochem 33:1125–1135CrossRefGoogle Scholar
  26. 26.
    Burke LD, Kinsella LM, O’Connell AM (2004) Russ J Electrochem 40:1105–1114CrossRefGoogle Scholar
  27. 27.
    Burke LD, Nugent PF (1997) Gold Bull 30:43–53CrossRefGoogle Scholar
  28. 28.
    Burke LD, Nugent PF (1998) Gold Bull 31:39–50CrossRefGoogle Scholar
  29. 29.
    Burke LD, Ahern AJ, O’Mullane AP (2002) Gold Bull 35:3–10CrossRefGoogle Scholar
  30. 30.
    Burke LD, Bruton GM, Collins JA (1998) Electrochim Acta 44:1467–1479CrossRefGoogle Scholar
  31. 31.
    Burke LD, Buckley DT, Morrissey JA (1994) Analyst 119:841–845CrossRefGoogle Scholar
  32. 32.
    Plowman BJ, O’Mullane AP, Bhargava SK (2011) Faraday Discuss 152:43–62CrossRefGoogle Scholar
  33. 33.
    Burke LD, Moran JM, Nugent PF (2003) J Solid State Electrochem 7:529–538CrossRefGoogle Scholar
  34. 34.
    Burke LD, Hurley LM (1999) Electrochim Acta 44:3451–3473CrossRefGoogle Scholar
  35. 35.
    Burke LD, Hurley LM (2002) J Solid State Electrochem 6:101–110CrossRefGoogle Scholar
  36. 36.
    Nowicka AM, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F (2010) Angew Chem Int Ed 49:3006–3009CrossRefGoogle Scholar
  37. 37.
    Sun K, Kohyama M, Tanaka S, Takeda S (2012) J Phys Chem A 116:9568–9573CrossRefGoogle Scholar
  38. 38.
    Burke LD (1994) Electrochim Acta 39:1841–1848CrossRefGoogle Scholar
  39. 39.
    Burke LD, O’Mullane AP (2000) J Solid State Electrochem 4:285–297CrossRefGoogle Scholar
  40. 40.
    Burke LD, O’Dwyer KJ (1990) Electrochem Acta 35:1821–1827CrossRefGoogle Scholar
  41. 41.
    Burke LD, O’Dwyer KJ (1990) Electrochim Acta 35:1829–1835CrossRefGoogle Scholar
  42. 42.
    O’Mullane AP, Bhargava SK (2011) Electrochem Commun 13:852–855CrossRefGoogle Scholar
  43. 43.
    Cherevko S, Kulyk N, Chung CH (2012) Electrochim Acta 69:190–196CrossRefGoogle Scholar
  44. 44.
    Conway BE (1995) Prog Surf Sci 49:331–452CrossRefGoogle Scholar
  45. 45.
    Laitinen HA, Chao MS (1961) J Electrochem Soc 108:726–731CrossRefGoogle Scholar
  46. 46.
    Nicol M (1980) Gold Bull 13:46–55CrossRefGoogle Scholar
  47. 47.
    Puddephatt R (1978) The chemistry of gold. Elsevier, New York, p 274Google Scholar
  48. 48.
    Peuckert M, Coenen FP, Bonzel HP (1984) Surf Sci 141:515–532CrossRefGoogle Scholar
  49. 49.
    Ferro CM, Calandra AJ, Arvia AJ (1975) J Electroanal Chem 59:239–253CrossRefGoogle Scholar
  50. 50.
    Martins ME, Cordova R, Arvia AJ (1981) Electrochim Acta 26:1547–1554CrossRefGoogle Scholar
  51. 51.
    Oesch U, Janata J (1983) Electrochim Acta 28:1237–1246CrossRefGoogle Scholar
  52. 52.
    Juodkazis K, Juodkazyte J, Jasulaitiene V, Lukinskas A, Sebeka B (2000) Electrochem Commun 2:503–507CrossRefGoogle Scholar
  53. 53.
    Schneeweiss MA, Kolb DM (1997) Solid State Ionics 94:171–179CrossRefGoogle Scholar
  54. 54.
    Xia SJ, Birss VI (2001) J Electroanal Chem 500:562–573CrossRefGoogle Scholar
  55. 55.
    Diaz-Moralez O, Calle-Vallejo F, de Munck C, Koper MTM (2013) Chem Sci 4:2334–2343CrossRefGoogle Scholar
  56. 56.
    Burke LD, McRann M (1981) J Electroanal Chem 125:387–399CrossRefGoogle Scholar
  57. 57.
    Burke LD, Hopkins GP (1984) J Appl Electrochem 14:679–686CrossRefGoogle Scholar
  58. 58.
    Chialvo AC, Triaca WE, Arvia AJ (1984) J Electroanal Chem 171:303–316CrossRefGoogle Scholar
  59. 59.
    Burke LD, O’Sullivan EJM (1981) J Electroanal Chem 117:155–160CrossRefGoogle Scholar
  60. 60.
    Burke LD, Lyons MEG, Whelan DP (1982) J Electroanal Chem 139:131–142CrossRefGoogle Scholar
  61. 61.
    Burke LD, Lyons MEG (1986) In: White RE, Bockris JOM, Conway BE (ed) Modern aspects of electrochemistry, no. 18. Plenum Press, New York p.169–248Google Scholar
  62. 62.
    Burke LD, Nugent PF (1998) J Electroanal Chem 444:19–29CrossRefGoogle Scholar
  63. 63.
    Burke LD, Cunnane VJ, Lee BH (1992) J Electrochem Soc 139:399–406CrossRefGoogle Scholar
  64. 64.
    Burke LD, O’Leary WA (1989) J Appl Electrochem 19:758–767CrossRefGoogle Scholar
  65. 65.
    Burke LD, Lee BH, Ryan TG (1990) J Electrochem Soc 137:2417–2422CrossRefGoogle Scholar
  66. 66.
    Selwood PW (1964) Magnetoelectrochemistry, 2nd edn. Interscience, New York, pp 167–341Google Scholar
  67. 67.
    Harrington DA, van den Driessche P (2011) Electrochim Acta 56:8005–8013CrossRefGoogle Scholar
  68. 68.
    Harrington DA, Conway BE (1987) Electrochim Acta 32:1703–1712CrossRefGoogle Scholar
  69. 69.
    Conway BE (2005) In: Barsoukov E, Macdonald JR (ed) Impedance spectroscopy—theory, experiment, and applications. J. Wiley & Sons, New Jersey p.469–497Google Scholar
  70. 70.
    Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Pure Appl Chem 86:245–258Google Scholar
  71. 71.
    Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Pure Appl Chem 86:259–262Google Scholar
  72. 72.
    Doyle RL, Godwin IJ, Brandon MP, Lyons MEG (2013) Phys Chem Chem Phys 15:13737–13783CrossRefGoogle Scholar
  73. 73.
    Lyons MEG, Doyle RL, Fernandez D, Godwin IJ, Browne MP, Rovetta A (2014) Electrochem Commun 45:60–62CrossRefGoogle Scholar
  74. 74.
    Lyons MEG, Doyle RL, Fernandez D, Godwin IJ, Browne MP, Rovetta A (2014) Electrochem Commun 45:56–59CrossRefGoogle Scholar
  75. 75.
    Lyons MEG, Brandon MP (2010) J Electroanal Chem 641:119–130CrossRefGoogle Scholar
  76. 76.
    McDonald JJ, Conway BE (1962) Proc Roy Soc London SerA 269:419–440CrossRefGoogle Scholar
  77. 77.
    Meyer RE (1960) J Electrochem Soc 107:847–853CrossRefGoogle Scholar
  78. 78.
    Yeo BS, Klaus SL, Ross PN, Mathies RA, Bell AT (2010) Chem Phys Chem 11:1854–1857Google Scholar
  79. 79.
    Yeo BS, Bell AT (2012) J Phys Chem C 116:8394–8400CrossRefGoogle Scholar
  80. 80.
    Yeo BS, Bell AT (2011) J Am Chem Soc 133:5587–5593CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Trinity Electrochemical Energy Conversion and Electrocatalysis (TEECE) GroupSchool of Chemistry and CRANNDublin 2Ireland

Personalised recommendations