Journal of Solid State Electrochemistry

, Volume 18, Issue 12, pp 3251–3257 | Cite as

Planar diffusion to macro disc electrodes—what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively?

  • Kamonwad Ngamchuea
  • Shaltiel Eloul
  • Kristina Tschulik
  • Richard G. Compton
Original Paper

Abstract

Simulations and experiments are reported which investigate the size of a macro disc electrode necessary to quantitatively show the chronoamperometric or voltammetric behaviour predicted by the Cottrell equation or the Randles-Sevcik equation on the basis of exclusive one-dimensional diffusional mass transport. For experimental time scales of several seconds, the contribution of radial diffusion is seen to be measurable even for electrodes of millimetres in radius. Recommendations on the size of macro electrodes for quantitative study are given and should exceed 4 mm radius in aqueous solution.

Keywords

Mass transport One-dimensional planar diffusion Cottrell equation Randles-Sevcik equation Chronoamperometry Cyclic voltammetry 

References

  1. 1.
    Amatore CA, Deakin MR, Wightman M (1986) Electrochemical kinetics at microelectrodes Part 1. Quasi-reversible electron transfer at cylinders. J Electroanal Chem Interfacial Electrochem 206:23–36. doi:10.1016/0022-0728(86)90253-6 CrossRefGoogle Scholar
  2. 2.
    Amatore C, Deakin MR, Wightman RM (1987) Electrochemical kinetics at microelectrodes: Part IV. Electrochemistry in media of low ionic strength. J Electroanal Chem Interfacial Electrochem 225:49–63. doi:10.1016/0022-0728(87)80004-9 CrossRefGoogle Scholar
  3. 3.
    Bond AM, Oldham KB, Zoski CG (1988) Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions. J Electroanal Chem Interfacial Electrochem 245:71–104. doi:10.1016/0022-0728(88)80060-3 CrossRefGoogle Scholar
  4. 4.
    Bond AM (1994) Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review. Analyst 119:1R–21R. doi:10.1039/AN994190001R CrossRefGoogle Scholar
  5. 5.
    Scholz F (2009) Electroanalytical methods: guide to experiments and applications. Springer Science & Business MediaGoogle Scholar
  6. 6.
    Montenegro MI, Montenegro I, Queirós MA, Daschbach JL (1991) Microelectrodes: theory and applications: theory and applications. Springer Science & Business MediaGoogle Scholar
  7. 7.
    Mayrhofer KJJ, Strmcnik D, Blizanac BB et al (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53:3181–3188. doi:10.1016/j.electacta.2007.11.057 CrossRefGoogle Scholar
  8. 8.
    Concepcion JJ, Binstead RA, Alibabaei L, Meyer TJ (2013) Application of the rotating ring-disc-electrode technique to water oxidation by surface-bound molecular catalysts. Inorg Chem 52:10744–10746. doi:10.1021/ic402240t CrossRefGoogle Scholar
  9. 9.
    Simonov AN, Kemppinen P, Pozo-Gonzalo C et al (2014) Aggregation of a Dibenzo[b, def]chrysene based organic photovoltaic material in solution. J Phys Chem B 118:6839–6849. doi:10.1021/jp501220v CrossRefGoogle Scholar
  10. 10.
    Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723. doi:10.1021/ac60210a007 CrossRefGoogle Scholar
  11. 11.
    Nicholson RS, Shain I (1965) Theory of stationary electrode polarography for a chemical reaction coupled between two charge transfers. Anal Chem 37:178–190. doi:10.1021/ac60221a002 CrossRefGoogle Scholar
  12. 12.
    Cottrell FG (1902) Z Für Phys Chem 42:385Google Scholar
  13. 13.
    Compton RG, Banks CE (2011) Understanding Voltammetry, 2nd ed. World ScientificGoogle Scholar
  14. 14.
    Fick A (1855) Ueber diffusion. Ann Phys 170:59–86. doi:10.1002/andp.18551700105 CrossRefGoogle Scholar
  15. 15.
    Fick A (1855) V. On liquid diffusion. Philos Mag Ser 4(10):30–39. doi:10.1080/14786445508641925 Google Scholar
  16. 16.
    Morris GP, Simonov AN, Mashkina EA et al (2013) A comparison of fully automated methods of data analysis and computer assisted heuristic methods in an electrode kinetic study of the pathologically variable [Fe(CN)6]3–/4– process by AC voltammetry. Anal Chem 85:11780–11787. doi:10.1021/ac4022105 CrossRefGoogle Scholar
  17. 17.
    Bentley CL, Bond AM, Hollenkamp AF et al (2014) Applications of convolution voltammetry in electroanalytical chemistry. Anal Chem 86:2073–2081. doi:10.1021/ac4036422 CrossRefGoogle Scholar
  18. 18.
    Simonov AN, Morris GP, Mashkina EA et al (2014) Inappropriate Use of the quasi-reversible electrode kinetic model in simulation-experiment comparisons of voltammetric processes that approach the reversible limit. Anal Chem 86:8408–8417. doi:10.1021/ac5019952 CrossRefGoogle Scholar
  19. 19.
    Norouzi P, Ganjali MR, Daneshgar P, Mohammadi A (2007) Fast Fourier transform continuous cyclic voltammetry development as a highly sensitive detection system for ultra trace monitoring of thiamine. Anal Lett 40:547–559. doi:10.1080/00032710600964874 CrossRefGoogle Scholar
  20. 20.
    Ebrahimi B, Shojaosadati SA, Daneshgar P et al (2011) Performance evaluation of fast Fourier-transform continuous cyclic-voltammetry pesticide biosensor. Anal Chim Acta 687:168–176. doi:10.1016/j.aca.2010.12.005 CrossRefGoogle Scholar
  21. 21.
    Amatore C, Pebay C, Thouin L et al (2010) Difference between ultramicroelectrodes and microelectrodes: influence of natural convection. Anal Chem 82:6933–6939. doi:10.1021/ac101210r CrossRefGoogle Scholar
  22. 22.
    Amatore C, Klymenko OV, Svir I (2012) Importance of correct prediction of initial concentrations in voltammetric scans: contrasting roles of thermodynamics, kinetics, and natural convection. Anal Chem 84:2792–2798. doi:10.1021/ac203188b CrossRefGoogle Scholar
  23. 23.
    Barnes AS, Streeter I, Compton RG (2008) On the use of digital staircase ramps for linear sweep voltammetry at microdisc electrodes: large step potentials significantly broaden and shift voltammetric peaks. J Electroanal Chem 623:129–133. doi:10.1016/j.jelechem.2008.06.022 CrossRefGoogle Scholar
  24. 24.
    Ward KR, Compton RG (2014) Quantifying the apparent “Catalytic” effect of porous electrode surfaces. J Electroanal Chem 724:43–47. doi:10.1016/j.jelechem.2014.04.009 CrossRefGoogle Scholar
  25. 25.
    Ward KR, Gara M, Lawrence NS et al (2013) Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: the effective electrochemical rate constant for non-flat and non-uniform electrode surfaces. J Electroanal Chem 695:1–9. doi:10.1016/j.jelechem.2013.02.012 CrossRefGoogle Scholar
  26. 26.
    Compton RG, Laborda E, Ward KR (2013) Understanding voltammetry: simulation of electrode processes. Imperial College Press, LondonGoogle Scholar
  27. 27.
    Eloul S, Compton RG (2014) Shielding of a microdisc electrode surrounded by an adsorbing surface. Chem Electro Chem 1:917–924. doi:10.1002/celc.201400005 Google Scholar
  28. 28.
    Konopka SJ, McDuffie B (1970) Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal Chem 42:1741–1746. doi:10.1021/ac50160a042 CrossRefGoogle Scholar
  29. 29.
    Lide DR (2008) CRC handbook of Chemistry and Physics, 89th ed. Taylor & Francis GroupGoogle Scholar
  30. 30.
    Shoup D, Szabo A (1982) Chronoamperometric current at finite disk electrodes. J Electroanal Chem Interfacial Electrochem 140:237–245. doi:10.1016/0022-0728(82)85171-1 CrossRefGoogle Scholar
  31. 31.
    Heinze J (1981) Diffusion processes at finite (micro) disk electrodes solved by digital simulation. J Electroanal Chem Interfacial Electrochem 124:73–86. doi:10.1016/S0022-0728(81)80285-9 CrossRefGoogle Scholar
  32. 32.
    Heinze J, Storzbach M (1991) Digital Simulation of Mass Transport to Ultramicroelectrodes. Conference Proceeding NATO Advanced Study Inst on Microelectrodes: Theory and ApplicationsGoogle Scholar
  33. 33.
    Britz D, Oldham KB, Østerby O (2009) Strategies for damping the oscillations of the alternating direction implicit method of simulation of diffusion-limited chronoamperometry at disk electrodes. Electrochim Acta 54:4822–4828. doi:10.1016/j.electacta.2009.03.087 CrossRefGoogle Scholar
  34. 34.
    Britz D, Østerby O, Strutwolf J (2012) Minimum grid digital simulation of chronoamperometry at a disk electrode. Electrochim Acta 78:365–376. doi:10.1016/j.electacta.2012.06.009 CrossRefGoogle Scholar
  35. 35.
    Klymenko OV, Evans RG, Hardacre C et al (2004) Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients. J Electroanal Chem 571:211–221. doi:10.1016/j.jelechem.2004.05.012 CrossRefGoogle Scholar
  36. 36.
    Xiong L, Aldous L, Henstridge MC, Compton RG (2012) Investigation of the optimal transient times for chronoamperometric analysis of diffusion coefficients and concentrations in non-aqueous solvents and ionic liquids. Anal Methods 4:371. doi:10.1039/c1ay05667k CrossRefGoogle Scholar
  37. 37.
    Paddon CA, Bhatti FL, Donohoe TJ, Compton RG (2006) Cryo-electrochemistry in tetrahydrofuran: the electrochemical reduction of a phenyl thioether: [(3-{[trans-4-(Methoxymethoxy)cyclohexyl]oxy}propyl)thio]benzene. J Electroanal Chem 589:187–194. doi:10.1016/j.jelechem.2006.02.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kamonwad Ngamchuea
    • 1
  • Shaltiel Eloul
    • 1
  • Kristina Tschulik
    • 1
  • Richard G. Compton
    • 1
  1. 1.Department of Chemistry Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations