Journal of Solid State Electrochemistry

, Volume 18, Issue 12, pp 3239–3243 | Cite as

Thin film-modified electrodes: a model for the charge transfer resistance in electrochemical impedance spectroscopy

  • Shaltiel Eloul
  • Christopher Batchelor-McAuley
  • Richard G. Compton
Feature Article

Abstract

A simple but general model is derived for the charge transfer resistance for a solution phase redox couple reacting at an electrode modified with a thin film such as a self-assembled monolayer. The layer itself is non-electroactive but changes the impedance response by virtue of altering the solubilities and diffusion coefficients of the electroactive species within the layer as compared to bulk solution. Such effects can give the illusion of altered electron transfer characteristics.

Keywords

Modified electrodes Electrochemical impedance spectroscopy Thin film Self-assembled monolayer Charge transfer resistance 

References

  1. 1.
    Durst RA, Bäumner AJ, Murray RW, Buck RP, Andrieux CP (1997) Chemically modified electrodes: recommended terminology and definitions. Pure Appl Chem 69(6):1317–1323CrossRefGoogle Scholar
  2. 2.
    Miller C, Cuendet P, Grätzel M (1991) Adsorbed ω-hydroxy thiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution. J Phys Chem 95(2):877–886CrossRefGoogle Scholar
  3. 3.
    Murray RW, Ewing AG, Durst RA (1987) Chemically modified electrodes: molecular design for electroanalysis. Anal Chem 59(5):379 A–390 AGoogle Scholar
  4. 4.
    Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2011) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707. doi:10.1021/ac202878q CrossRefGoogle Scholar
  5. 5.
    Pumera M, Sofer Z, Ambrosi A (2014) Layered transition metal dichalcogenides for electrochemical energy generation and storage. J Mater Chem A 2(24):8981–8987CrossRefGoogle Scholar
  6. 6.
    Andrieux CP, Savéant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93(2):163–168CrossRefGoogle Scholar
  7. 7.
    Albery WJ, Mount AR (1993) Application of a transmission line model to impedance studies on a poly(vinylferrocene)-modified electrode. J Chem Soc Faraday Trans 89(2):327–331CrossRefGoogle Scholar
  8. 8.
    Albery WJ, Mount AR (1994) Dual transmission line with charge-transfer resistance for conducting polymers. J Chem Soc Faraday Trans 90(8):1115–1119CrossRefGoogle Scholar
  9. 9.
    Albery WJ, Mount AR (1991) A second transmission line model for conducting polymers. J Electroanal Chem 305(1):3–18CrossRefGoogle Scholar
  10. 10.
    Hepburn WG, Batchelor-Mcauley C, Tschulik K, Barnes EO, Kachoosangi RT, Compton RG (2014) Diffusional transport to and through thin-layer nanoparticle film modified electrodes: capped CdSe nanoparticle modified electrodes. Phys Chem Chem Phys 16(33):18034–18041CrossRefGoogle Scholar
  11. 11.
    Chang B-Y, Park S-M (2010) Electrochemical impedance spectroscopy. Ann Rev Anal Chem 3(1):207–229. doi:10.1146/annurev.anchem.012809.102211 CrossRefGoogle Scholar
  12. 12.
    Randviir EP, Banks CE (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods 5(5):1098–1115CrossRefGoogle Scholar
  13. 13.
    Xu Q, Davis JJ (2014) The diagnostic utility of electrochemical impedance. Electroanalysis 26(6):1249–1258CrossRefGoogle Scholar
  14. 14.
    Rueda MR, Dapena FP (2011) Application of the electrochemical impedance spectroscopy to the study of surface processes. Collect Czechoslov Chem Commun 76(12):1825–1854. doi:10.1135/cccc2011118 CrossRefGoogle Scholar
  15. 15.
    Robinstein I, Sabatani E, Rishpon J (1987) Electrochemical impedance analysis of polyaniline films on electrodes. J Electrochem Soc 134(12):3078–3083CrossRefGoogle Scholar
  16. 16.
    Hu CC, Chu CH (2001) Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors—effects of film coverage/thickness and anions. J Electroanal Chem 503(2):105–116CrossRefGoogle Scholar
  17. 17.
    Diard J-P, Glandut N, Gorrec BL, Montella C (2004) EIS study of the FeIII/FeII redox couple at a Nafion®-coated Pt electrode. J Electroanal Chem 566(2):269–280Google Scholar
  18. 18.
    Eckermann AL, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254(15–16):1769–1802CrossRefGoogle Scholar
  19. 19.
    Chockalingam M, Darwish N, Le Saux G, Gooding J-J (2011) Importance of the indium tin oxide substrate on the quality of self-assembled monolayers formed from organophosphonic acids. Langmuir 27(6):2545–2552CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shaltiel Eloul
    • 1
  • Christopher Batchelor-McAuley
    • 1
  • Richard G. Compton
    • 1
  1. 1.Department of Chemistry, Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations