Journal of Solid State Electrochemistry

, Volume 19, Issue 2, pp 577–584 | Cite as

Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications

  • Dewei WangEmail author
  • Yonggang Min
  • Youhai Yu
Original Paper


A novel honeycomb-like hierarchical carbon (HHC) derived from wheat bran has been obtained by the facile and environmentally friendly method via hydrothermal carbonization of wheat bran followed by KOH activation process at mild conditions without any template. The prepared carbon has a large Brunauer–Emmett–Teller (BET) surface area of 2,189.2 m2 g−1 and pore volumes of up to 1.1 cm3 g−1. The performance of the HHC as electrodes for electrochemical supercapacitors was evaluated in a symmetric two-electrode cell configuration with 6 M KOH and 1 M TEABF4/AN as the electrolytes. Electrochemical studies show that the supercapacitors based on the as-prepared HHC exhibit an excellent capacitive performance in both aqueous and organic electrolytes. We attribute the outstanding capacitive behavior of HHC to their unique structure and high accessible surface area. Considering that the cost-effective and feasible process, this facile technique presented here will not only provide a promising method for the production of biomass-derived hierarchical carbon but also put forward the application of carbon materials in energy storage and conversion.


Hierarchical carbon Biomass Hydrothermal carbonization Supercapacitor 



The authors are grateful to the financial supports from the National Natural Science Foundation of China (no. 21303257), Director Foundation of Xi’an Institute of Optics and Precision Mechanics (no. Y255F81ZZ0 and Y455A41ZZ0), and Western Light Program of the Chinese Academy of Sciences (no. Y329181213).

Supplementary material

10008_2014_2639_MOESM1_ESM.doc (1.9 mb)
ESM 1 (DOC 1908 kb)

(AVI 2325 kb)


  1. 1.
    Simon P, Gogotsi Y (2013) Acc Chem Res 46:1094–1103CrossRefGoogle Scholar
  2. 2.
    Malachi N, Soffer A, Aurbach D (2011) J Solid State Electrochem 15:1563–1578CrossRefGoogle Scholar
  3. 3.
    Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11–27CrossRefGoogle Scholar
  4. 4.
    Wei L, Yushin G (2012) Nano Energy 1:552–565CrossRefGoogle Scholar
  5. 5.
    Kalyani P, Anitha A (2013) Int J Hydrog Energy 38:4034–4045CrossRefGoogle Scholar
  6. 6.
    Wang HL, Li Z, Mitlin D (2014) Chem Electro Chem 1:332–337Google Scholar
  7. 7.
    Wang JC, Kaskel S (2012) J Mater Chem 22:23710–23725CrossRefGoogle Scholar
  8. 8.
    Hu B, Wang K, Wu LH, Yu SH, Antonietti M, Titirici MM (2010) Adv Mater 22:813–828CrossRefGoogle Scholar
  9. 9.
    Libra JA, Ro KS, Funke A, Berge ND, Neubauer Y, Titirici MM (2011) Biogeosciences 2:89–124Google Scholar
  10. 10.
    Zhu H, Wang XL, Yang F, Yang XR (2011) Adv Mater 23:2745–2748CrossRefGoogle Scholar
  11. 11.
    Wang H, Xu ZW, Kohandehghan A, Li Z, Cui K, Tan XH, Stephenson TJ, King’ondu CK, Holt CMB, Olsen BC, Tak JK, Harfield D, Anyia AO, Mitlin D (2013) ACS Nano 7:5131–5141CrossRefGoogle Scholar
  12. 12.
    White RJ, Yoshizawa N, Antonietti M, Titirici MM (2011) Green Chem 13:2428–2434CrossRefGoogle Scholar
  13. 13.
    Titirici MM, Thomas A, Yu SH, Mller JO, Antonietti M (2007) Chem Mater 19:4205–4212CrossRefGoogle Scholar
  14. 14.
    Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Adv Energy Mater 1:356–361CrossRefGoogle Scholar
  15. 15.
    Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Adv Mater 22:5202–5206CrossRefGoogle Scholar
  16. 16.
    Lv Y, Gan L, Liu M, Xiong W, Xu Z, Zhu D, Wright DS (2012) J Power Sources 209:152–157CrossRefGoogle Scholar
  17. 17.
    Wang DW, Wang QH, Wang TM (2011) Inorg Chem 50:6482–6492CrossRefGoogle Scholar
  18. 18.
    Stoller MD, Ruoff RS (2010) Energy Environ Sci 3:1294–301CrossRefGoogle Scholar
  19. 19.
    Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48:7752–7777CrossRefGoogle Scholar
  20. 20.
    Singh V, Joung D, Zhai L, Das S, Khondaker S, Seal S (2011) Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  21. 21.
    Wang DW, Min YG, Yu YH, Peng B (2014) J Colloid Interface Sci 417:270–277CrossRefGoogle Scholar
  22. 22.
    Wu FC, Tseng RL, Hu CC, Wang CC (2006) J Power Sources 159:1532–1542CrossRefGoogle Scholar
  23. 23.
    Li YY, Li ZS, Shen PK (2013) Adv Mater 25:2474–2480CrossRefGoogle Scholar
  24. 24.
    Kim YJ, Lee BJ, Suezaki H, Chino T, Abe Y, Yanagiura T, Park KC, Endo M (2006) Carbon 44:1592–1595CrossRefGoogle Scholar
  25. 25.
    Zhang ZJ, Cui P, Chen XY, Liu JW (2013) J Solid State Electrochem 17:1749–1758CrossRefGoogle Scholar
  26. 26.
    Li XA, Xing W, Zhuo SP, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Bioresour Technol 102:1118–1123CrossRefGoogle Scholar
  27. 27.
    Yan YF, Cheng QL, Pavlinek V, Saha P, Li CZ (2013) J Solid State Electrochem 17:1677–1684CrossRefGoogle Scholar
  28. 28.
    Wang DW, Li YQ, Wang QH, Wang TM (2012) Eur J Inorg Chem 628–635Google Scholar
  29. 29.
    Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  30. 30.
    Wang DW, Min YG, Yu YH, Peng B (2014) Electrochim Acta 141:271–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Advanced Materials, State Key Laboratory of Transient Optics and PhotonicsXi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’anPeople’s Republic of China

Personalised recommendations