Journal of Solid State Electrochemistry

, Volume 19, Issue 2, pp 453–468 | Cite as

Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study

  • Vladimir V. Sizov
  • Maria V. Novozhilova
  • Elena V. Alekseeva
  • Mikhail P. Karushev
  • Aleksander M. Timonov
  • Svetlana N. Eliseeva
  • Aleksandr A. Vanin
  • Valery V. Malev
  • Oleg V. Levin
Original Paper

Abstract

Polymer complexes of nickel with SalEn-type ligands (SalEn = N,N′-bis (salicylidene) ethylenediamine) possess a number of unique properties, such as high redox conductivity, electrochromic behavior and selective catalytic activity in heterogeneous reactions. However, the mechanism of their redox transformation is still not clear. To understand this mechanism, we have performed a combined study of electrochemical and spectral properties of polymers derived from nickel complexes with various SalEn-type ligands containing methoxy substituents in phenyl rings, and methyl substituents in imino bridges. Experimental data were correlated with the results of density functional theory (DFT) calculations for model chains consisting of one to four monomer units. We found that, in acetonitrile-based supporting electrolyte, oxidation of such complexes, regardless of ligand substituents, proceeds via two routes, leading to formation of two oxidized forms: for the first one, a good correlation between experimental and computation results was observed. It has been demonstrated that positive charge in this form is delocalized in the phenyl moieties of ligand. The second oxidized form is stable only in coordinating solvents at high electrode polarizations and is likely to have the charge localized on the central metal atom, stabilized by axial coordination of solvent molecules. The complicated electrochemical response of each of the polymers that we have studied can be explained in the scope of this model without any additional assumptions by taking into account conversion of one oxidized form into another. Understanding the solvent effect on the oxidation route of the complexes will enable controlling their catalytic properties and stability.

Keywords

Conductive polymers Cyclic voltammetry Quartz crystal microbalance DFT calculations Voltabsorptometry 

Supplementary material

10008_2014_2619_MOESM1_ESM.pdf (280 kb)
ESM 1(PDF 280 kb)

References

  1. 1.
    Popeko IE, Vasilev VV, Timonov AM, Shagisultanova GA (1990) Electrochemical-behavior of palladium (II) complexes with schiff-bases and synthesis of Pd (II)-Pd (IV) mixed-ligand complex. Zh Neorg Khim 35:933–937Google Scholar
  2. 2.
    Dahm CE, Peters DG (1996) Catalytic reduction of α, ω-dihaloalkanes with nickel (I) salen as a homogeneous-phase and polymer-bound mediator. J Electroanal Chem 406:119–129CrossRefGoogle Scholar
  3. 3.
    Dahm CE, Peters DG, Simonet J (1996) Electrochemical and spectroscopic characterization of anodically formed nickel salen polymer films on glassy carbon, platinum, and optically transparent tin oxide electrodes in acetonitrile containing tetramethylammonium tetrafluoroborate. J Electroanal Chem 410:163–171CrossRefGoogle Scholar
  4. 4.
    Leung ACW, Maclachlan MJ (2007) Schiff base complexes in macromolecules. J Inorg Organomet Polymers Mater 17:57–89CrossRefGoogle Scholar
  5. 5.
    Gao F, Li JL, Kang FY, Zhang YK, Wang XD, Ye F, Yang J (2011) Preparation and characterization of a poly[Ni(salen)]/multiwalled carbon nanotube composite by in situ electropolymerization as a capacitive material. J Phys Chem C 115:11822–11829CrossRefGoogle Scholar
  6. 6.
    Popeko IE, Timonov AM, Shagisultanova GA (1990) Electrocatalytic properties of a chemically modified electrode based on the Pd (IV)-Pd (II) complex with Bis (Salicylidene)-ethylenediamine. J Appl Chem USSR 63:2033–2036Google Scholar
  7. 7.
    Chepurnaya IA, Logvinov SA, Karushev MP, Timonov AM, Malev VV (2012) Modification of supercapacitor electrodes with polymer metallocomplexes: methods and results. Russ J Electrochem 48:538–544CrossRefGoogle Scholar
  8. 8.
    Zhang YK, Li JL, Gao F, Kang FY, Wang XD, Ye F, Yang J (2012) Electropolymerization and electrochemical performance of salen-type redox polymer on different carbon supports for supercapacitors. Electrochim Acta 76:1–7CrossRefGoogle Scholar
  9. 9.
    Vilas-Boas M, Freire C, De Castro B, Christensen PA, Hillman AR (1997) New insights into the structure and properties of electroactive polymer films derived from [Ni(salen)]. Inorg Chem 36:4919–4929CrossRefGoogle Scholar
  10. 10.
    Vilas-Boas M, Santos IC, Henderson MJ, Freire C, Hillman AR, Vieil E (2003) Electrochemical behavior of a new precursor for the design of poly[Ni(salen)]-based modified electrodes. Langmuir 19:7460–7468CrossRefGoogle Scholar
  11. 11.
    Vilas-Boas M, Henderson MJ, Freire C, Hillman AR, Vieil E (2000) A combined electrochemical quartz-crystal microbalance probe beam deflection (EQCM-PBD) study of solvent and ion transfers at a poly[Ni(saltMe)]-modified electrode during redox switching. Chem Eur J 6:1160–1167CrossRefGoogle Scholar
  12. 12.
    Vilas-Boas M, Freire C, De Castro B, Christensen PA, Hillman AR (2001) Spectroelectrochemical characterisation of poly[Ni(saltMe)]-modified electrodes. Chem Eur J 7:139–150CrossRefGoogle Scholar
  13. 13.
    Hamnett A, Abel J, Eameaim J, Christensen P, Timonov A, Vasilyeva S (1999) A study of the polymerisation and electrochemical cycling of Pd methoxy-Salen derivatives using fast ellipsometry and FT-infrared spectroscopy. Phys Chem Chem Phys 1:5147–5156CrossRefGoogle Scholar
  14. 14.
    Shimazaki Y, Yajima T, Tani F, Karasawa S, Fukui K, Naruta Y, Yamauchi O (2007) Syntheses and electronic structures of one-electron-oxidized group 10 metal (II)-(disalicylidene) diamine complexes (metal = Ni, Pd, Pt). J Am Chem Soc 129:2559–2568CrossRefGoogle Scholar
  15. 15.
    Shimazaki Y, Stack TDP, Storr T (2009) Detailed evaluation of the geometric and electronic structures of one-electron oxidized group 10 (Ni, Pd, and Pt) metal (II)-(disalicylidene) diamine complexes. Inorg Chem 48:8383–8392CrossRefGoogle Scholar
  16. 16.
    Orio M, Jarjayes O, Kanso H, Philouze C, Neese F, Thomas F (2010) X-ray structures of copper (II) and nickel (II) radical salen complexes: the preference of galactose oxidase for copper (II). Angew Chem Int Ed 49:4989–4992CrossRefGoogle Scholar
  17. 17.
    Storr T, Wasinger EC, Pratt RC, Stack TDP (2007) The geometric and electronic structure of a one-electron-oxidized nickel (II) bis (salicylidene) diamine complex. Angew Chem Int Ed 46:5198–5201CrossRefGoogle Scholar
  18. 18.
    Shimazaki Y, Tani F, Fukui K, Naruta Y, Yamauchi O (2003) One-electron oxidized nickel (II)-(disalicylidene) diamine complex: temperature-dependent tautomerism between Ni(III)-phenolate and Ni(II)-phenoxyl radical states. J Am Chem Soc 125:10512–10513CrossRefGoogle Scholar
  19. 19.
    Rotthaus O, Jarjayes O, Perez Del Valle C, Philouze C, Thomas F (2007) A versatile electronic hole in one-electron oxidized NiIIbis-salicylidene phenylenediamine complexes. Chem Commun 43:4462–4464CrossRefGoogle Scholar
  20. 20.
    Bag B, Mondal N, Rosair G, Mitra S (2000) The first thermally-stable singly oxo-bridged dinuclear Ni(III) complex. Chem Commun:1729–1730Google Scholar
  21. 21.
    Rotthaus O, Jarjayes O, Thomas F, Philouze C, Valle CPD, Saint-Aman E, Pierre JL (2006) Fine tuning of the oxidation locus, and electron transfer, in nickel complexes of pro-radical ligands. Chem Eur J 12:2293–2302CrossRefGoogle Scholar
  22. 22.
    Rotthaus O, Thomas F, Jarjayes O, Philouze C, Saint-Aman E, Pierre JL (2006) Valence tautomerism in octahedral and square-planar phenoxyl-nickel (II) complexes: are imino nitrogen atoms good friends? Chem Eur J 12:6953–6962CrossRefGoogle Scholar
  23. 23.
    Goldsby KA, Blaho JK, Hoferkamp LA (1989) Oxidation of nickel (II) bis (salicylaldimine) complexes: solvent control of the ultimate redox site. Polyhedron 8:113–115CrossRefGoogle Scholar
  24. 24.
    Dolphin D, Niem T, Felton RH, Fujita I (1975) Reversible intramolecular electron transfer in an oxidized nickel porphyrin. J Am Chem Soc 97:5288–5290CrossRefGoogle Scholar
  25. 25.
    Seth J, Palaniappan V, Bocian DF (1995) Oxidation of nickel (II) tetraphenylporphyrin revisited. Characterization of stable nickel (III) complexes at room temperature. Inorg Chem 34:2201–2206CrossRefGoogle Scholar
  26. 26.
    Rodyagina TY, Gaman'kov PV, Dmitrieva EA, Chepurnaya IA, Vasil'eva SV, Timonov AM (2005) Structuring redox polymers poly[M (schiff)] (M = Ni, Pd; Schiff = schiff bases) on a molecular level: methods and results of an investigation. Russ J Electrochem 41:1101–1110CrossRefGoogle Scholar
  27. 27.
    Robin MB, Day P (1968) Mixed-valence chemistry: a survey and classification. Adv Inorg Chem Radiochem 10:247–422Google Scholar
  28. 28.
    Tedim J, Patricio S, Fonseca J, Magalhaes AL, Moura C, Hillman AR, Freire C (2011) Modulating spectroelectrochemical properties of [Ni(salen)] polymeric films at molecular level. Synth Met 161:680–691CrossRefGoogle Scholar
  29. 29.
    Pfeiffer P, Breith E, Lübbe E, Tsumaki T (1933) Tricyclische orthokondensierte Nebenvalenzringe. Just Liebigs Ann der Chemie 503:84–130CrossRefGoogle Scholar
  30. 30.
    Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  31. 31.
    Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  32. 32.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  33. 33.
    Dunning TH Jr, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer H III (ed) Methods of electronic structure theory. Springer, New York, pp 1–27CrossRefGoogle Scholar
  34. 34.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations—potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310CrossRefGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01Google Scholar
  36. 36.
    Levin OV, Karushev MP, Timonov AM, Alekseeva EV, Zhang SH, Malev VV (2013) Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochim Acta 109:153–161CrossRefGoogle Scholar
  37. 37.
    Malev VV, Levin OV, Timonov AM (2013) Quasi-equilibrium voltammetric curves resulting from the existence of two immobile charge carriers within electroactive polymer films. Electrochim Acta 108:313–320CrossRefGoogle Scholar
  38. 38.
    Krasikova SA, Besedina MA, Karushev MP, Dmitrieva EA, Timonov AM (2010) In situ electrochemical microbalance studies of polymerization and redox processes in polymeric complexes of transition metals with Schiff bases. Russ J Electrochem 46:218–226CrossRefGoogle Scholar
  39. 39.
    Tolstopyatova EG, Pogulaichenko NA, Eliseeva SN, Kondratiev VV (2009) Spectroelectrochemical study of poly-3,4-ethylenedioxythiophene films in the presence of different supporting electrolytes. Russ J Electrochem 45:252–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Vladimir V. Sizov
    • 1
  • Maria V. Novozhilova
    • 1
  • Elena V. Alekseeva
    • 1
  • Mikhail P. Karushev
    • 2
  • Aleksander M. Timonov
    • 2
  • Svetlana N. Eliseeva
    • 1
  • Aleksandr A. Vanin
    • 1
  • Valery V. Malev
    • 1
    • 3
  • Oleg V. Levin
    • 1
  1. 1.Institute of ChemistrySt. Petersburg State University, Universitetskii pr. 26Saint PetersburgRussian Federation
  2. 2.Department of ChemistryHerzen State Pedagogical UniversitySaint PetersburgRussian Federation
  3. 3.Institute of CytologyRussian Academy of SciencesSaint PetersburgRussian Federation

Personalised recommendations