Journal of Solid State Electrochemistry

, Volume 19, Issue 1, pp 71–76 | Cite as

In situ conductivity measurements of polythiophene partially containing 3,4-ethylenedioxythiophene and 3-hexylthiophene

  • Ichiro ImaeEmail author
  • Takahiro Mashima
  • Hitoshi Sagawa
  • Kenji Komaguchi
  • Yousuke Ooyama
  • Yutaka HarimaEmail author
Original Paper


Optical and electrochemical properties of a novel polythiophene partially containing 3,4-ethylenedioxythiophene (EDOT), poly(3,3″″-dihexyl-3′,4′,3‴,4‴-diethylenedioxy-2,2′:5′,2″:5″,2‴:5‴,2″″-quinquethiophene), in a neutral state, which was synthesized by polycondensation using direct C-H coupling reaction, were firstly investigated. In situ electrical conductivity of the doped polymer film was measured simultaneously with doping levels at different potentials to yield charge carrier mobilities as a function of doping level of the polymer. The highest conductivity was found to be around 101 S cm−1, which is almost one-order higher than that of an EDOT-containing polythiophene obtained by electrolytic polymerization, poly(3″,4″-ethylenedioxy-2,2′:5′,2″-terthiophene).


In situ conductivity measurement Polythiophene Ethylenedioxythiophene Alkylthiophene Solubility 



This work was supported in part by grants from the Hiroshima Bank (I.I.), the General Sekiyu Research & Development Encouragement & Assistance Foundation (I.I.), the TANAKA Holdings (I.I.), and grants-in-aid for scientific research from the Japan Society for the Promotion of Science (JSPS) (no. 22550198, I.I. and no. 25288085, Y.H.).


  1. 1.
    Skotheim TA, Reynolds JR (eds) (2007) Handbook of conducting polymers, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Leclerc M, Morin JF (eds) (2010) Design and synthesis of conjugated polymers. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Chujo Y (ed) (2010) Conjugated polymer synthesis: methods and reactions. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Inzelt G (ed) (2012) Conducting polymers: a new era in electrochemistry. Springer, HeidelbergGoogle Scholar
  5. 5.
    Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088CrossRefGoogle Scholar
  6. 6.
    Yan H, Okuzaki H (2010) Poly(3,4-ethylenedioxythiophen)/poly(4-styrenesulfonate): thin films and microfibers. Macromol Symp 296:286–293CrossRefGoogle Scholar
  7. 7.
    Elschner A, Lövenich W (2011) Solution-deposited PEDOT for transparent conductive applications. MRS Bull 36:794–798CrossRefGoogle Scholar
  8. 8.
    Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917CrossRefGoogle Scholar
  9. 9.
    Matsushita S, Jeong YS, Akagi K (2013) Electrochromism-driven linearly and circularly polarised dichroism of poly(3,4-ethylenedioxythiophene) derivatives with chirality and liquid crystallinity. Chem Commun 49:1883–1890CrossRefGoogle Scholar
  10. 10.
    Patra A, Bendikov M, Chand S (2014) Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials. Acc Chem Res 47:1465–1474CrossRefGoogle Scholar
  11. 11.
    Raimundo JM, Blanchard P, Frère P, Mercier N, Ledoux-Rak I, Hierleb R, Roncali J (2001) Push–pull chromophores based on 2,2´-bi(3,4-ethylenedioxythiophene) (BEDOT) p-conjugating spacer. Tetrahedron Lett 42:1507–1510CrossRefGoogle Scholar
  12. 12.
    Raimundo JM, Blanchard P, Gallego-Planas N, Mercier N, Ledoux-Rak I, Hierle R, Roncali J (2002) Design and synthesis of push-pull chromophores for second-order nonlinear optics derived from rigidified thiophene-based p-conjugating spacers. J Org Chem 67:205–218CrossRefGoogle Scholar
  13. 13.
    Turbiez M, Frère P, Allain M, Videlot C, Ackermann J, Roncali J (2005) Design of organic semiconductors: tuning the electronic properties of p-conjugated oligothiophenes with the 3,4-ethylenedioxythiophene (EDOT) building block. Chem Eur J 11:3742–3752CrossRefGoogle Scholar
  14. 14.
    Spencer HJ, Skabara PJ, Giles M, McCulloch I, Coles SJ, Hursthouse MB (2005) The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDTT by analogy with well-defined EDTT–EDOT copolymers. J Mater Chem 15:4783–4792CrossRefGoogle Scholar
  15. 15.
    Özen AS, Atilgan C, Sonmez G (2007) Noncovalent intramolecular interactions in the monomers and oligomers of the acceptor and donor type of low band gap conducting polymers. J Phys Chem C 111:16362–16371CrossRefGoogle Scholar
  16. 16.
    Hergué N, Leriche P, Blanchard P, Allain M, Gallego-Planas N, Frère P, Roncali J (2008) Evidence for the contribution of sulfur–bromine intramolecular interactions to the self-rigidification of thiophene-based p-conjugated systems. New J Chem 32:932–936CrossRefGoogle Scholar
  17. 17.
    Sotzing GA, Reynolds JR, Steel PJ (1996) Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers. Chem Mater 8:882–889CrossRefGoogle Scholar
  18. 18.
    Sotzing GA, Reddinger JL, Reynolds JR, Steel PJ (1997) Redox active electrochromic polymers from low oxidation monomers containing 3,4-ethylenedioxythiophene (EDOT). Synth Met 84:199–201CrossRefGoogle Scholar
  19. 19.
    Johansson T, Mammo W, Svensson M, Andersson MR, Inganäs O (2003) Electrochemical bandgaps of substituted polythiophenes. J Mater Chem 13:1316–1323CrossRefGoogle Scholar
  20. 20.
    Pepitone MF, Eaiprasertsak K, Hardaker SS, Gregory RV (2003) Synthesis of 2,5-bis[(3,4-ethylenedioxy)thien-2-yl]-3-substituted thiophenes. Org Lett 5:3229–3232CrossRefGoogle Scholar
  21. 21.
    Andersson P, Forchheimer R, Tehrani P, Berggren M (2007) Printable all-organic electrochromic active-matrix displays. Adv Funct Mater 17:3074–3082CrossRefGoogle Scholar
  22. 22.
    Atılgan N, Cihaner A, Önal AM (2010) Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer. React Funct Polym 70:244–250CrossRefGoogle Scholar
  23. 23.
    Invernale MA, Ding Y, Sotzing GA (2010) All-organic electrochromic spandex. ACS Appl Mater Interfaces 2:296–300CrossRefGoogle Scholar
  24. 24.
    Imae I, Imabayashi S, Korai K, Mashima T, Ooyama Y, Komaguchi K, Harima Y (2012) Electrosynthesis and charge-transport properties of poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene). Mater Chem Phys 131:752–756CrossRefGoogle Scholar
  25. 25.
    Imae I, Sagawa H, Mashima T, Komaguchi K, Harima Y (2014) Synthesis of soluble polythiophene partially containing 3,4-ethylenedioxthiophene and 3-hexylthiophene by polycondensation. Open J Polym Chem 4:in pressGoogle Scholar
  26. 26.
    Harima Y, Eguchi T, Yamashita K (1998) Enhancement of carrier mobilities in poly(3-methylthiophene) electrochemical doping. Synth Met 95:69–74CrossRefGoogle Scholar
  27. 27.
    Harima Y, Eguchi T, Yamashita K, Kojima K, Shiotani M (1999) An in situ ESR study on poly(3-methylthiophene): charge transport due to polarons and bipolarons before the evolution of metallic conduction. Synth Met 105:121–128CrossRefGoogle Scholar
  28. 28.
    Harima Y, Kunugi Y, Yamashita K, Shiotani M (2000) Determination of mobilities of charge carriers in electrochemically aniondoped polythiophene film. Chem Phys Lett 317:310–314CrossRefGoogle Scholar
  29. 29.
    Tang H, Zhu L, Harima Y, Yamashita K (2000) Chronocoulometric determination of doping levels of polythiophenes: Influences of overoxidation and capacitive processes. Synth Met 110:105–113CrossRefGoogle Scholar
  30. 30.
    Imae I, Tokita D, Ooyama Y, Komaguchi K, Ohshita J, Harima Y (2011) Charge transport properties of polymer films comprising oligothiophene in silsesquioxane network. Polym Chem 2:868–872CrossRefGoogle Scholar
  31. 31.
    Imae I, Tokita D, Ooyama Y, Komaguchi K, Ohshita J, Harima Y (2012) Oligothiophenes incorporated in a polysilsesquioxane network: application to tunable transparent conductive films. J Mater Chem 22:16407–16415CrossRefGoogle Scholar
  32. 32.
    Imae I, Takayama S, Tokita D, Ooyama Y, Komaguchi K, Ohshita J, Harima Y (2012) Synthesis of a novel family of polysilsesquioxanes having oligothiophenes with well-defined structures. Int J Polym Sci 2012:484523 (10 pp)Google Scholar
  33. 33.
    Imae I, Imabayashi S, Komaguchi K, Tan Z, Ooyama Y, Harima Y (2014) Synthesis and electrical properties of novel oligothiophenes partially containing 3,4-ethylenedioxythiophenes. RSC Adv 4:2501–2508CrossRefGoogle Scholar
  34. 34.
    Yano J, Kobayashi M, Yamasaki S, Harima Y, Yamashita K (2001) Mean redox potentials of polyaniline determined by chronocoulometry. Synth Met 119:315–316CrossRefGoogle Scholar
  35. 35.
    Monk P, Mortimer R, Rosseinsky R (2007) Electrochromism and electrochromic devices. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. 36.
    Beaujuge PM, Reynolds JR (2010) Color control in p-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320CrossRefGoogle Scholar
  37. 37.
    Harima Y, Jiang X, Kunugi Y, Yamashita K, Naka A, Lee KK, Ishikawa M (2003) Influence of p-conjugation length on mobilities of charge carriers in conducting polymers. J Mater Chem 13:1298–1305CrossRefGoogle Scholar
  38. 38.
    Harima Y, Kim DH, Tsutitori Y, Jiang X, Patil R, Ooyama Y, Ohshita J, Kunai A (2006) Influence of extended p-conjugation units on carrier mobilities in conducting polymers. Chem Phys Lett 420:387–390CrossRefGoogle Scholar
  39. 39.
    Jiang X, Harima Y, Yamashita K, Tada Y, Ohshita J, Kunai A (2002) Doping-induced change of carrier mobilities in poly(3-hexylthiophene) films with different stacking structures. Chem Phys Lett 364:616–620CrossRefGoogle Scholar
  40. 40.
    Jiang X, Harima Y, Yamashita K, Tada Y, Ohshita J, Kunai A (2003) A transport study of poly(3-hexylthiophene) films with different regioregularities. Synth Met 135–136:351–352CrossRefGoogle Scholar
  41. 41.
    Jiang X, Patil R, Harima Y, Ohshita J, Kunai A (2005) Influences of self-assembled structure on mobilities of charge carriers in pconjugated polymers. J Phys Chem B 109:221–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations