Advertisement

Journal of Solid State Electrochemistry

, Volume 18, Issue 10, pp 2847–2856 | Cite as

Effect of the resorcinol/catalyst ratio in the capacitive performance of carbon xerogels with potential use in sodium chloride removal from saline water

  • M. C. Zafra
  • P. Lavela
  • G. Rasines
  • C. Macías
  • J. L. Tirado
Original Paper

Abstract

Carbon xerogels were prepared by the resorcinol–formaldehyde method as potential electrodes for the electroadsorption of sodium chloride from aqueous solution. This work evidences the relevance of the resorcinol-to-catalyst (R/C) ratio employed during the synthesis in the capacitive properties of these carbon xerogels. Raman spectra revealed a significant increase of the structural ordering from R/C = 355 to 480, while an opposite trend was detected for R/C = 500. X-ray photoelectron spectroscopy showed an increase in the contribution of hydroxyl groups for those xerogels with a less ordered structure. Similarly, surface area and micropore volume showed a maximum for R/C = 480. The textural changes fairly matched with capacitance values recorded by cyclic voltammetry. Thus, a value as high as 89 F g−1 was recorded for R/C = 480, which was confirmed by a higher electrosorption capacity of 0.1 mmol of NaCl g−1 as compared to only 0.087 and 0.07 mmol g−1 for R/C = 355 and 500, respectively. Also, a low internal resistance was determined for CXG480, revealing the optimized properties achieved for the xerogel with intermediate resorcinol/catalyst ratio.

Keywords

Carbon Xerogel Voltammetry Deionization Impedance 

Notes

Acknowledgments

The authors are indebted to the MICINN (Contract IPT-2011-1450-310000 (ADECAR)) and Junta de Andalucía (Research group FQM-288) for the financial support. We also thank the fruitful collaboration of Isolux Ingeniería, S.A., Fundación Imdea Energía and Proingesa.

References

  1. 1.
    Anderson MA, Cudero AL, Palma J (2010) Electrochim Acta 553:845–856Google Scholar
  2. 2.
    Elimelech M, Phillip WA (2011) Science 333:712–717CrossRefGoogle Scholar
  3. 3.
    Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM (2013) Prog Mater Sci 58:1388–1442CrossRefGoogle Scholar
  4. 4.
    Oren Y (2008) Desalination 228:10–29CrossRefGoogle Scholar
  5. 5.
    Huyskens C, Helsen J, de Haan AB (2013) Desalination 328:8–16CrossRefGoogle Scholar
  6. 6.
    Bouhadana Y, Avraham E, Soffer A, Aurbach D (2010) AIChE 56:779–789Google Scholar
  7. 7.
    Zou L, Morris G, Qi D (2008) Desalination 225:329–340CrossRefGoogle Scholar
  8. 8.
    Noked M, Soffer A, Aurbach D (2011) J Solid State Electrochem 15:1563–1578CrossRefGoogle Scholar
  9. 9.
    Fernández PS, Castro EB, Real SG, Visintin A, Arenillas A, Calvo EG, Juárez-Pérez EJ, Menéndez AJ, Martins MEJ (2012) Solid State Electrochem 16:1067–1076CrossRefGoogle Scholar
  10. 10.
    Wang Z, Dou B, Zheng L, Zhang G, Liu Z, Hao Z (2012) Desalination 299:96–102CrossRefGoogle Scholar
  11. 11.
    Yoshizawa N, Hatori H, Soneda Y, Hanzawa Y, Kaneko K, Dresselhaus MS (2003) J Non-Cryst Solids 330:99–105CrossRefGoogle Scholar
  12. 12.
    Kyotani T, Chmiola J, Gogotsi Y (2009) In: Beguin F, Frackowiak E (eds) Carbon materials for electrochemical energy storage systems. CRC Press/Taylor and Francis, Boca RatonGoogle Scholar
  13. 13.
    Tsouris C, Mayes R, Kiggans J, Sharma K, Yiacoumi S, DePaoli D, Dai S (2011) Environ Sci Technol 45:10243–10249CrossRefGoogle Scholar
  14. 14.
    Biesheuvel PM, Porada S, Levi M, Bazant MZ (2014) J Solid State Electrochem 18:1365–1376CrossRefGoogle Scholar
  15. 15.
    Ania CO, Pernak J, Stefaniak F, Raymundo-Pinero E, Beguin F (2009) Carbon 47:3158–3166CrossRefGoogle Scholar
  16. 16.
    Pekala RW (1989) J Mater Sci 24:3221–3227CrossRefGoogle Scholar
  17. 17.
    Al-Muhtaseb SA, Ritter JA (2003) Adv Mater 15:101–114CrossRefGoogle Scholar
  18. 18.
    Saliger R, Fischer U, Herta C, Fricke J (1998) J Non-Cryst Solids 225:81–85CrossRefGoogle Scholar
  19. 19.
    Petricevic R, Glora M (2001) Fricke J Carbon 39:857–867CrossRefGoogle Scholar
  20. 20.
    Zafra MC, Lavela P, Rasines G, Macías C, Tirado JL, Ania CO (2014) Electrochim Acta 135:208–216Google Scholar
  21. 21.
    Tofighy MA, Mohammadi T (2010) Desalination 258:182–186CrossRefGoogle Scholar
  22. 22.
    Jawhari T, Roid A, Casado J (1995) Carbon 33:1561–1565CrossRefGoogle Scholar
  23. 23.
    Dippel B, Jander H, Heintzenberg J (1999) Phys Chem Chem Phys 1:4707–4712CrossRefGoogle Scholar
  24. 24.
    Kicinski W, Norek M, Bystrzejewski M (2013) J Phys Chem Solids 7:4101–4109Google Scholar
  25. 25.
    Zani A, Dellasega D, Russo V, Passoni M (2013) Carbon 56:358–365CrossRefGoogle Scholar
  26. 26.
    Robertson J (2002) Mater Sci Eng R 37:129–281CrossRefGoogle Scholar
  27. 27.
    Edwards ER, Antunes EF, Botelho EC, Baldan MR, Corat EJ (2011) Appl Surf Sci 258:641–648CrossRefGoogle Scholar
  28. 28.
    Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) Carbon 35:1799–1810CrossRefGoogle Scholar
  29. 29.
    Laszlo K, Tombaczb E, Josepovits K (2001) Carbon 39:1217–1228CrossRefGoogle Scholar
  30. 30.
    Zapata-Benabithe Z, Carrasco-Marín F, de Vicente J, Moreno-Castilla C (2013) Langmuir 29:6166–6173CrossRefGoogle Scholar
  31. 31.
    Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon J Electrochem Soc 147:2486–2493CrossRefGoogle Scholar
  32. 32.
    Barbieri O, Hahn M, Herzog A, Kötz R (2005) Carbon 43:1303–1310CrossRefGoogle Scholar
  33. 33.
    Rasines G, Lavela P, Macías C, Haro M, Ania CO, Tirado JL (2012) J Electroanal Chem 671:92–98CrossRefGoogle Scholar
  34. 34.
    Liu XM, Zhang R, Zhan L, Long DH, Qiao WM, Yang JH, Ling LC (2007) New Carbon Mater 22:153–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. C. Zafra
    • 1
  • P. Lavela
    • 1
  • G. Rasines
    • 2
  • C. Macías
    • 2
  • J. L. Tirado
    • 1
  1. 1.Laboratorio de Química InorgánicaUniversidad de CórdobaCórdobaSpain
  2. 2.Nanoquimia S.L.CórdobaSpain

Personalised recommendations