Journal of Solid State Electrochemistry

, Volume 18, Issue 7, pp 1847–1854 | Cite as

Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol

  • Chelladurai Karuppiah
  • Selvakumar Palanisamy
  • Shen-Ming Chen
  • R. Emmanuel
  • M. Ajmal Ali
  • P. Muthukrishnan
  • P. Prakash
  • Fahad M. A. Al-Hemaid
Original Paper

Abstract

Green biosynthesis of nanoparticles and their applications in sensor field is of great interest to the researchers. We report herein a simple green approach for the synthesis of silver nanoparticles (Ag-NPs) using Acacia nilotica Willd twig bark and its application for the detection of 4-nitro phenol (4-NP). The synthesized Ag-NPs were characterized by Transmission electron microscopy, X-ray diffraction and elemental analysis. The size of synthesized Ag-NPs was in the range of 10–50 nm. The Ag-NPs modified electrode shows a high sensitivity and selectivity towards the sensing of 4-NP. The fabricated modified electrode shows a low detection limit of 15 nM on the wider linear response range from 100 nM to 350 μM with the sensitivity of 2.58 ± 0.05 μAμM−1 cm−2. In addition, the fabricated sensor shows good repeatability and reproducibility.

Figure

The schematic representation of the fabrication of Ag-NPs and application of 4-nitrophenol sensing

Keywords

Green biosynthesis Bionanotechnology Acacia nilotica Silver nanoparticles 4-nitrophenol Nanomolar detection Electrochemical oxidation 

Notes

Acknowledgments

The support of Visiting Professorship to SMC at King Saud University is gratefully acknowledged.

References

  1. 1.
    Niemeyer CM (2001) Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  2. 2.
    Li Y, Duan X, Qian Y, Li Y, Liao H (1999) J Colloid Interface Sci 209:347–349CrossRefGoogle Scholar
  3. 3.
    Kim JS, Kulk E, Yu KN, Kim JH, Park SJ, Lee HJ et al (2007) Nanomedicine 3:95–101CrossRefGoogle Scholar
  4. 4.
    Tan Y, Dai X, Li Y, Zhu D (2003) J Mater Chem 13:1069–1075CrossRefGoogle Scholar
  5. 5.
    Mallick K, Witcomb MJ, Scurell MS (2004) J Mater Sci 39:4459–4463CrossRefGoogle Scholar
  6. 6.
    Fayaz AM, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT (2011) Process Biochem 46:636–641CrossRefGoogle Scholar
  7. 7.
    Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Colloids Surf B 74:123–126CrossRefGoogle Scholar
  8. 8.
    Absar A, Priyabrata M, Deenadayal M, Satyajyoti S, Khan MI, Rajiv K et al (2002) J Am Chem Soc 124:12108–12109CrossRefGoogle Scholar
  9. 9.
    Vipul B, Debabrata R, Absar A, Murali S (2004) J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  10. 10.
    Vipul B, Debabrata R, Atul B, Keda A, Ambarish S, Absar A et al (2005) J Mater Chem 15:2583–2589CrossRefGoogle Scholar
  11. 11.
    Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Proc Natl Acad Sci U S A 96:13611–13614CrossRefGoogle Scholar
  12. 12.
    Mukherjee P, Ahamad A, Mandal D, Senapati S, Sainkar SR, Khan MI (2001) Nano Lett 1:515–519CrossRefGoogle Scholar
  13. 13.
    Ankamwar B, Chaudhary M, Muraly S (2005) Nanometal Chem 35:19–26Google Scholar
  14. 14.
    Shankar S, Ahamad A, Sastry M (2003) Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  15. 15.
    Keun SO, Ree SK, Jinho L, Dongmin K, Sun HC, Soon HY (2008) J Appl Polym Sci 108:3239–3244CrossRefGoogle Scholar
  16. 16.
    Amanda JH, Lei C, William LK, Richard PVD (2005) J Am Chem Soc 127:2264–2271CrossRefGoogle Scholar
  17. 17.
    Afraz A, Rafati AA, Hajian A (2013) J Solid State Electrochem 17:2017–2025CrossRefGoogle Scholar
  18. 18.
    Liu B, Hu X, Deng Y, Yang S, Sun C (2012) J Solid State Electrochem 16:927–930CrossRefGoogle Scholar
  19. 19.
    Fayaz AM, Tiwary CS, Kalaichelvan PT, Venkatesan R (2009) Colloids Surf B 75:175–178CrossRefGoogle Scholar
  20. 20.
    Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venkatesan R (2010) Nanomedicine 6:103–109CrossRefGoogle Scholar
  21. 21.
    Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) J Agric Food Chem 57:6246–6252CrossRefGoogle Scholar
  22. 22.
    Hu S, Xu C, Wang G, Cu D (2001) Talanta 54:115–123CrossRefGoogle Scholar
  23. 23.
    Yin H, Zhou Y, Han R, Qiu Y, Ai S, Zhu L (2012) J Solid State Electrochem 16:75–82CrossRefGoogle Scholar
  24. 24.
    Jiao XX, Luo HQ, Li NB (2013) J Electroanal Chem 691:83–89CrossRefGoogle Scholar
  25. 25.
    Niazi A, Yazdanipour A (2007) J Hazard Mater 146:421–427CrossRefGoogle Scholar
  26. 26.
    Nistor C, Oubi A, Marco MP, Barcelo D, Emneus (2001) J Anal Chim Acta 426:185–195CrossRefGoogle Scholar
  27. 27.
    Thompson MJ, Ballinger LN, Cross SE, Roberts MS (1996) J Chromatogr B 677:117–122CrossRefGoogle Scholar
  28. 28.
    Guo X, Wang Z, Zhou S (2004) Talanta 64:135–139CrossRefGoogle Scholar
  29. 29.
    Huang W, Yang C, Zhang S (2003) Anal Bioanal Chem 375:703–707Google Scholar
  30. 30.
    Li S, Du D, Huang J, Tu H, Yang Y, Zhang A (2013) Analyst 138:2761–2768CrossRefGoogle Scholar
  31. 31.
    Yang C (2004) Microchim Acta 148:87–92CrossRefGoogle Scholar
  32. 32.
    Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y (2009) Electrochem Commun 11:1365–1368CrossRefGoogle Scholar
  33. 33.
    Boateng A, Toth AB (2012) Analyst 137:4531–4538CrossRefGoogle Scholar
  34. 34.
    Sathishkumar M, Sneha K, Yun YS (2010) Bioresour Technol 101:7958–7965CrossRefGoogle Scholar
  35. 35.
    Noginov MA, Zhu G, Bahoura M, Adegoke J, Small C, Ritzo BA, Drachev VP, Shalaev VM (2007) Appl Phys B 86:455–460CrossRefGoogle Scholar
  36. 36.
    Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  37. 37.
    Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Colloids Surf B 108:255–259CrossRefGoogle Scholar
  38. 38.
    Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Colloids Surf B 73:219–223CrossRefGoogle Scholar
  39. 39.
    Zhou C, Liu Z, Dong Y, Li D (2009) Electroanalysis 21:853–858Google Scholar
  40. 40.
    Sun W, Jiang Q, Jiao K (2009) J Solid State Electrochem 13:1193–1199CrossRefGoogle Scholar
  41. 41.
    Casella IG, Contursi M (2007) J Electrochem Soc 154:697–702CrossRefGoogle Scholar
  42. 42.
    Niaz A, Fischer J, Barek J, Yosypchuk B, Sirajuddin, Bhanger MI (2009) Electroanalysis 21:1786–1791CrossRefGoogle Scholar
  43. 43.
    Li JH, Kuang DZ, Feng YL, Zhang FX, Xua ZF, Liu MQ (2012) J Hazard Mater 201–202:250–259CrossRefGoogle Scholar
  44. 44.
    Luo LQ, Zou XL, Ding YP, Wu QS (2008) Sensors Actuators B 135:61–65CrossRefGoogle Scholar
  45. 45.
    Rounaghi G, Kakhki RM, Azizi-toupkanloo H (2012) Mater Sci Eng C 32:172–177CrossRefGoogle Scholar
  46. 46.
    Xu Y, Wang Y, Ding Y, Luo L, Liu X, Zhang Y (2013) J Appl Electrochem 43:679–687CrossRefGoogle Scholar
  47. 47.
    Zhang T, Lang Q, Yang D, Li L, Zeng L, Zheng C, Li T, Wei M, Liu A (2013) Electrochim Acta 106:127–134CrossRefGoogle Scholar
  48. 48.
    El-Mhammedi MA, Achak M, Bakasse M, Chtaini A (2009) J Hazard Mater 163:323–328CrossRefGoogle Scholar
  49. 49.
    Yin H, Zhou Y, Ai S, Ma Q, Zhu L, Lu L (2012) Int J Environ Anal Chem 92:742–754CrossRefGoogle Scholar
  50. 50.
    Liu XY (2010) Bull Korean Chem Soc 31:1182–1186CrossRefGoogle Scholar
  51. 51.
    Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Microchim Acta 169:87–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chelladurai Karuppiah
    • 1
  • Selvakumar Palanisamy
    • 1
  • Shen-Ming Chen
    • 1
    • 3
  • R. Emmanuel
    • 2
  • M. Ajmal Ali
    • 3
  • P. Muthukrishnan
    • 2
  • P. Prakash
    • 1
    • 2
  • Fahad M. A. Al-Hemaid
    • 3
  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Post Graduate and Research Department of ChemistryThiagarajar CollegeMaduraiIndia
  3. 3.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations