Advertisement

Journal of Solid State Electrochemistry

, Volume 18, Issue 11, pp 3091–3097 | Cite as

Anodic polarization of nanocrystalline titanium

  • Marta ZwolińskaEmail author
  • Kamil Załęgowski
  • Agata Roguska
  • Halina Garbacz
  • Krzysztof J. Kurzydłowski
Original Paper

Abstract

TiO2 nanotubes are extensively investigated because of their unique properties and wide range of applications, e.g., in biomedicine. They are used as coatings on titanium implant materials accelerating osteoblast (bone cell) adhesion and improving osteointegration. Owing to its high mechanical properties, nanocrystalline titanium is likely to replace the widely used titanium alloys, which contains harmful ions such as V and Al. The performance properties of nanocrystalline titanium can be modified by subjecting it to various surface treatments tailored to the demands of a given application. The aim of this study is to determine whether the grain refinement of the titanium substrate has an influence on the formation of TiO2 nanotubes. The TiO2 nanotubes were fabricated by anodic polarization of micro- and nanotitanium at a constant voltage of 10, 15, and 20 V for 2 h in an electrolyte containing fluoride ions. The nanocrystalline bulk titanium (grade 2) with grain size of about 90 nm and high density of dislocations was obtained using hydrostatic extrusion. Commercially available coarse-grained titanium with grain size of 20 μm was used as a reference sample. The microstructure of the fabricated nanotubular layers was revealed using scanning electron microscopy and focus ion beam microscopy. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine the chemical composition of the fabricated layers. The results indicate that grain refinement influences the morphology of TiO2 nanotubes while their chemistry remains unchanged.

Keywords

Nanocrystalline titanium Anodization Nanotubes Biotechnology 

Notes

Acknowledgments

This work was carried out under the project NN 507 22 64 40.

References

  1. 1.
    Pei LZ, Zhao HS, Tan W, Yu HY, Chen YW, Zhang QF (2009) Single crystalline ZnO nanorods grown by a simple hydrothermal process. Mater Charact 60:1063–1067CrossRefGoogle Scholar
  2. 2.
    Kalska-Szostko B, Orzechowska E (2011) Preparation of magnetic nanowires modified with functional groups. Curr Appl Phys 11:103–108CrossRefGoogle Scholar
  3. 3.
    Punbusayakul N (2012) Carbon nanotubes architectures in electroanalysis. Procedia Eng 32:683–689CrossRefGoogle Scholar
  4. 4.
    Li L, Zhou Z, Lei J, He J, Zhang S, Pan F (2012) Highly ordered anodic TiO2 nanotube arrays and their stabilities as photo(electro)catalysts. Appl Surf Sci 258:3647–3651CrossRefGoogle Scholar
  5. 5.
    Tighineanu A, Ruff T, Albu S, Hahn R, Schmuki P (2010) Conductivity of TiO2 nanotubes: influence of annealing time and temperature. Chem Phys Lett 494:260–263CrossRefGoogle Scholar
  6. 6.
    Brammer KS, Oh S, Cobb CJ, Bjursten LM, Heyde H, Jin S (2009) Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater 5:3215–3223CrossRefGoogle Scholar
  7. 7.
    Sreekantan S, Lockman Z, Hazan R, Tasbihi M, Tong L, Mohamed AR (2009) Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. J Alloys Compd 485:478–483CrossRefGoogle Scholar
  8. 8.
    Wang N, Lin H, Li J, Yang X, Chi B (2006) Electrophoretic deposition and optical property of titania nanotubes films. Thin Solid Films 496:649–652CrossRefGoogle Scholar
  9. 9.
    Gang L, Zhongqing L, Zhao Z, Xin Y (2009) Preparation of titania nanotube arrays by the hydrothermal method. Chin J Catal 30:37–42CrossRefGoogle Scholar
  10. 10.
    Camposeco R, Castillo S, Mejia I, Mugica V, Carrera R, Montoya A, Morán-Pineda M, Navarrete J, Gómez R (2012) Active TiO2 nanotubes for CO oxidation at low temperature. Catal Commun 17:81–88CrossRefGoogle Scholar
  11. 11.
    Vasilev K, Poh Z, Kant K, Chan J, Michelmore A, Losic D (2010) Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 31:532–540CrossRefGoogle Scholar
  12. 12.
    Cai Q, Yang L, Yu Y (2006) Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films 515:1802–1806CrossRefGoogle Scholar
  13. 13.
    Nguyen QA, Bhargava YV, Devine TM (2008) Titania nanotube formation in chloride and bromide containing electrolytes. Electrochem Commun 10:471–475CrossRefGoogle Scholar
  14. 14.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075CrossRefGoogle Scholar
  15. 15.
    Kodama A, Bauer S, Komatsu A, Asoh H, Ono S, Schmuki P (2009) Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 5:2322–2330CrossRefGoogle Scholar
  16. 16.
    Yu W, Qiu J, Zhang F (2011) In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins. Colloids Surf B Biointerfaces 84:400–405CrossRefGoogle Scholar
  17. 17.
    Yu W, Qiu J, Xu L, Zhang F (2009) Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution. Biomed Mater 4:065012CrossRefGoogle Scholar
  18. 18.
    Brammer KS, Oh S, Frendsen CJ, Jin S (2010) TiO2 nanotube structures for enhanced cell and biological functionality. JOM 62:50–55CrossRefGoogle Scholar
  19. 19.
    Topolski K, Garbacz H, Pachla W, Kurzydłowski KJ (2011) Homogeneity of bulk nanostructured titanium obtained by hydrostatic extrusion. Mater Sci Forum 674:47–51CrossRefGoogle Scholar
  20. 20.
    Garbacz H, Lewandowska M, Pachla W, Kurzydłowski KJ (2006) Structural and mechanical properties of nanocrystalline titanium and 316LVM steel processed by hydrostatic extrusion. J Microsc 223:272–274CrossRefGoogle Scholar
  21. 21.
    Garbacz H, Kurzydlowski KJ (2007) Properties of nanotitanium for potential medical applications. Macromol Symp 253:128–133CrossRefGoogle Scholar
  22. 22.
    Xie Y, Zhou L, Lu J (2009) Photoelectrochemical behavior of titania nanotube array grown on nanocrystalline titanium. J Mater Sci Science 44:2907–2915Google Scholar
  23. 23.
    Xiao XF, Liu RF, Tian T (2008) Preparation of bioactive titania nanotube arraysin HF/Na2HPO4 electrolyte. J Alloy Comp 466:356–362Google Scholar
  24. 24.
    Ge R, Fu W, Yang H, Zhang Y, Zhao W, Liu Z, Wang C, Zhu H, Yu Q, Zou G (2008) Fabrication and characterization of highly-ordered titania nanotubes via electrochemical anodization. Mater Lett 62:2688–2691Google Scholar
  25. 25.
    Lockman Z, Sreekantan S, Ismail S, Schmidt-Mende L, MacManus-Driscoll JL (2010) Influence of anodisation voltage on the dimension of titania nanotubes. J Alloy Compd 503:359–364Google Scholar
  26. 26.
    Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621:254–266Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marta Zwolińska
    • 1
    Email author
  • Kamil Załęgowski
    • 1
  • Agata Roguska
    • 2
  • Halina Garbacz
    • 1
  • Krzysztof J. Kurzydłowski
    • 1
  1. 1.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of Physical ChemistryPolish Academy of ScienceWarsawPoland

Personalised recommendations