Journal of Solid State Electrochemistry

, Volume 18, Issue 6, pp 1585–1591 | Cite as

Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li–MnO2 batteries

  • Jian Zeng
  • Shengping WangEmail author
  • Jingxian Yu
  • Hong Cheng
  • Haibo Tan
  • Qiuling Liu
  • Jinping Wu
Original Paper


A variety of MnO2 nanorods containing one or two transition metals (M) (with M = Al and/or Ni) have been successfully synthesised via a facile hydrothermal synthesis route. The physical–chemical properties and electrochemical performance of manganese oxide were analysed by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-OES), Fourier transform infrared spectrometer (FT-IR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller method (BET), galvanostatic discharge and cyclic voltammetry (CV). The result indicated that α-type MnO2 was obtained, and a small quantity of Al and/or Ni were embedded into the crystal lattice of manganese oxide instead of the partial Mn ion, which resulted in anisotropic expansion of the MnO2 unit cell. The doping of Al can strengthen Mn–O bonds in the [MnO6] octahedral and increases the specific surface area of the modified material (i.e., Al–MnO2 is 119 m2 g−1). Interestingly, MnO2 electrode co-doped with equimolar Al and Ni exhibited the highest specific capacity of 169 mAh g−1 at 0.05 mA cm−2. The substantial enhancement of the electrochemical lithium storage capacity was due to the ameliorating of integrative factors, such as high specific surface area, excellent lattice parameters and lower electrical resistance, as well as short Li+ and electron transport length. In addition, a more stable host skeleton also guaranteed an endurable Li+ intercalation behaviour during the discharge process.


Transition metal Hydrothermal synthesis Manganese dioxide Doped Anisotropic expansion 



This work was supported by the National Natural Science Foundation of China (21173198).


  1. 1.
    Li LX, Hua P, Tian XK, Yang C, Pi ZB (2010) Electrochim Acta 55:1682–1686CrossRefGoogle Scholar
  2. 2.
    Cheng FY, Zhao JZ, Song W, Li CS, Ma H, Chen J, Shen PW (2006) Inorg Chem 45:2038–2044CrossRefGoogle Scholar
  3. 3.
    Li ZP, Wang JQ, Liu S, Liu XH, Yang SR (2011) J Power Sources 196:8160–8165CrossRefGoogle Scholar
  4. 4.
    Jin Y, Chen HY, Chen MH, Liu N, Li QW (2013) ACS Appl Mater Interfaces 5:3408–3416CrossRefGoogle Scholar
  5. 5.
    Kim SH, Im WM, Hong JK, Oh SM (2000) J Electrochem Soc 147:413–419CrossRefGoogle Scholar
  6. 6.
    Franger S, Bach S, Farcy J, Pereira-Ramos JP, Baffier N (2002) J Power Sources 109:262–275CrossRefGoogle Scholar
  7. 7.
    Moon JH, Munakata H, Kajihara K, Kanamura K (2013) Electrochem 81:2–6CrossRefGoogle Scholar
  8. 8.
    Mondal AK, Wang B, Su DW, Wang Y, Zhang XG, Wang GX (2012) J Chin Chem Soc 59:1275–1279CrossRefGoogle Scholar
  9. 9.
    Nam HS, Wu NL, Lee KT, Kim KM, Yeom CG, Hepowit LR, Ko JM, Kim JD (2012) J Electrochem Soc 159:A899–A903CrossRefGoogle Scholar
  10. 10.
    Qu DY, Diehl D, Conway BE, Pell WG, Qian SY (2005) J Appl Electrochem 35:1111–1120CrossRefGoogle Scholar
  11. 11.
    Nartey VK, Binder L, Huber A (2000) J Power Sources 87:205–211CrossRefGoogle Scholar
  12. 12.
    Pang X, Ma ZQ, Zuo L (2009) Acta Phys-Chim Sin 25:2433–2437Google Scholar
  13. 13.
    Meng FH, Yan XL, Zhu Y, Si PC (2013) Nanoscale Res Lett 8:1–8CrossRefGoogle Scholar
  14. 14.
    Bahloul A, Nessark B, Briot E, Groult H, Mauger A, Zaghib K, Julien CM (2013) J Power Sources 240:267–272CrossRefGoogle Scholar
  15. 15.
    Liu YY, Liu DW, Zhang QF, Cao GZ (2011) J Mater Chem 21:9969–9983CrossRefGoogle Scholar
  16. 16.
    Kumagai N, Komaba S, Abe K, Yashiro H (2005) J Power Sources 146:310–314CrossRefGoogle Scholar
  17. 17.
    Machefaux E, Verbaere A, Guyomard D (2006) J Power Sources 157:443–447CrossRefGoogle Scholar
  18. 18.
    Li XF, Li Z, Xia TC, Dong HC, Song YH, Wang LZ (2012) J Phys Chem Solids 73:1229–1234CrossRefGoogle Scholar
  19. 19.
    Wang X, Li YD (2002) Chem Commun 7:764–765CrossRefGoogle Scholar
  20. 20.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366–377CrossRefGoogle Scholar
  21. 21.
    Ananth MV, Pethkar S, Dakshinamurthi K (1998) J Power Sources 75:278–282CrossRefGoogle Scholar
  22. 22.
    Machefaux E, Brousse T, Belanger D, Guyomard D (2007) J Power Sources 165:651–655CrossRefGoogle Scholar
  23. 23.
    Wang JG, Yang Y, Huang ZH, Kang FY (2012) Mater Chem Phys 133:437–444CrossRefGoogle Scholar
  24. 24.
    Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) J Phys Chem B 109:20207–20214CrossRefGoogle Scholar
  25. 25.
    Kanoh H, Feng Q, Miyai Y, Ooi K (1995) J Electrochem Soc 142:702–707CrossRefGoogle Scholar
  26. 26.
    Xi X, Hong L, Chen ZH (1989) J Electrochem Soc 136:266–271CrossRefGoogle Scholar
  27. 27.
    Balachandran D, Morgan D, Ceder G (2002) J Solid State Chem 166:91–103CrossRefGoogle Scholar
  28. 28.
    Brock SL, Duan NG, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) Chem Mate 10:2619–2628CrossRefGoogle Scholar
  29. 29.
    Brock SL, Sanabria M, Suib SL, Urban V, Thiyagarajan P, Potter DI (1999) J Phys Chem B 103:7416–7428CrossRefGoogle Scholar
  30. 30.
    Feng Q, Kanoh H, Ooi K (1999) J Mater Chem 9:319–333CrossRefGoogle Scholar
  31. 31.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRefGoogle Scholar
  32. 32.
    Dose WM, Donne SW (2013) J Power Sources 221:261–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jian Zeng
    • 1
  • Shengping Wang
    • 1
    Email author
  • Jingxian Yu
    • 2
  • Hong Cheng
    • 1
  • Haibo Tan
    • 1
  • Qiuling Liu
    • 1
  • Jinping Wu
    • 1
  1. 1.Faculty of Material Science and ChemistryChina University of GeosciencesWuhanChina
  2. 2.School of Chemistry and PhysicsThe University of AdelaideAdelaideAustralia

Personalised recommendations