Journal of Solid State Electrochemistry

, Volume 18, Issue 4, pp 909–916 | Cite as

Fabrication of high-performance supercapacitors based on hollow SnO2 microspheres

  • Suzhen Ren
  • Meng Wang
  • Meiling Xu
  • Ying Yang
  • Cuiying Jia
  • Ce Hao
Original Paper


Hollow SnO2 microspheres are prepared from resorcinol–formaldehyde gel and different tin compound precursors, including stannous sulfate (SnSO4), stannous chloride dihydrate (SnCl2·2H2O), and stannic chloride pentahydrate (SnCl4·5H2O) via chemically induced self-assembly in hydrothermal environment. Morphological and structural characterizations of as-prepared hollow SnO2 microspheres are carried out using scanning electron microscopy, X-ray diffraction, and nitrogen adsorption–desorption method. Their electrochemical properties as the supercapacitor electrode materials for application are also investigated using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurement in 1 M H2SO4 electrolyte. There are redox peaks in CV curves and a large number of Faradic plateaus in GCD curves. At different scan rates, all the obtained samples have excellent electrochemical properties. The hollow SnO2 microspheres obtained from SnSO4 and SnCl2·2H2O as precursors show relatively lower specific capacitances of 395 and 347 F g−1, respectively. However, the specific capacitance of SnO2 from SnCl4·5H2O is up to 663 F g−1. The high specific surface area and hollow structure of SnO2 microspheres are due to facilitating the rapid transport of electrolyte ions and improving the electrochemical performance. It is expected that hollow SnO2 microspheres are the promising redox supercapacitor materials.


Tin dioxide Hollow microsphere Electrode materials Supercapacitor 


  1. 1.
    Simon P, Gogotsi Y (2008) Nature Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269CrossRefGoogle Scholar
  3. 3.
    Burke A (2000) J Power Sources 91:37–50CrossRefGoogle Scholar
  4. 4.
    Sarangapani S, Tilak B, Chen CP (1996) J Electrochem Soc 143:3791–3799CrossRefGoogle Scholar
  5. 5.
    Zheng JP, Jow TR (1995) J Electrochem Soc 142:L6–L8CrossRefGoogle Scholar
  6. 6.
    Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333–A1338CrossRefGoogle Scholar
  7. 7.
    Hu CC, Tsou TW (2003) J Power Sources 115:179–186CrossRefGoogle Scholar
  8. 8.
    Kim H, Popov BN (2003) J Electrochem Soc 150:D56–D62CrossRefGoogle Scholar
  9. 9.
    Reddy RN, Reddy RG (2003) J Power Sources 124:330–337CrossRefGoogle Scholar
  10. 10.
    Prasad KR, Koga K, Miura N (2004) Chem Mater 16:1845–1847CrossRefGoogle Scholar
  11. 11.
    Wu NL (2002) Mater Chem Phys 75:6–11CrossRefGoogle Scholar
  12. 12.
    Kuo SL, Wu NL (2003) Electrochem Solid State Lett 6:A85–A87CrossRefGoogle Scholar
  13. 13.
    Bélanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) J Electrochem Soc 147:2923–2929CrossRefGoogle Scholar
  14. 14.
    Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699–2730CrossRefGoogle Scholar
  15. 15.
    Chen JS, Lou XW (D) (2013) Small 9:1877–1893CrossRefGoogle Scholar
  16. 16.
    Zhu J, Lu Z, Aruna S, Aurbach D, Gedanken A (2000) Chem Mater 12:2557–2566CrossRefGoogle Scholar
  17. 17.
    Srivastava D, Chappel S, Palchik O, Zaban A, Gedanken A (2002) Langmuir 18:4160–4164CrossRefGoogle Scholar
  18. 18.
    Mann J, Yao N, Bocarsly AB (2006) Langmuir 22:10432–10436CrossRefGoogle Scholar
  19. 19.
    Selvan RK, Perelshtein I, Perkas N, Gedanken A (2008) J Phys Chem C 112:1825–1830CrossRefGoogle Scholar
  20. 20.
    Prasad KR, Miura N (2004) Electrochem Commun 6:849–852CrossRefGoogle Scholar
  21. 21.
    Hwang SW, Hyun SH (2007) J Power Sources 172:451–459CrossRefGoogle Scholar
  22. 22.
    Pusawale SN, Deshmukh PR, Lokhande CD (2011) Appl Surf Sci 257:9498–9502CrossRefGoogle Scholar
  23. 23.
    Shakir I, Shahid M, Nadeem M, Kang DJ (2012) Electrochim Acta 72:134–137CrossRefGoogle Scholar
  24. 24.
    Wu M, Zhang L, Wang D, Xiao C, Zhang S (2008) J Power Sources 175:669–674CrossRefGoogle Scholar
  25. 25.
    Zhong Z, Yin Y, Gates B, Xia Y (2000) Adv Mater 12:206–209CrossRefGoogle Scholar
  26. 26.
    Han S, Jang B, Kim T, Oh SM, Hyeon T (2005) Adv Funct Mater 15:1845–1850CrossRefGoogle Scholar
  27. 27.
    Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Langmuir 21:7937–7944CrossRefGoogle Scholar
  28. 28.
    Deng D, Lee JY (2008) Chem Mater 20:1841–1846CrossRefGoogle Scholar
  29. 29.
    Cai HM, Ren SZ, Wang M, Jia CY (2013) Acta Phys -Chim Sin 29:881–888Google Scholar
  30. 30.
    Ren S, Wang M, Jia C, Hao C, Wang X (2013) Energy Technol 1:332–337CrossRefGoogle Scholar
  31. 31.
    Shanmugam S, Gedanken A (2006) Electrochem Commun 8:1099–1105CrossRefGoogle Scholar
  32. 32.
    Ng KC, Zhang S, Peng C, Chen GZ (2009) J Electrochem Soc 156:A846–A853CrossRefGoogle Scholar
  33. 33.
    Cheng B, Russell JM, Shi W, Zhang L, Samulski ET (2004) J Am Chem Soc 126:5972–5973CrossRefGoogle Scholar
  34. 34.
    Prasad KR, Miura N (2004) Appl Phys Lett 85:4199–4201CrossRefGoogle Scholar
  35. 35.
    Zhang J, Zhao XS (2012) ChemSusChem 5:818–841CrossRefGoogle Scholar
  36. 36.
    MacArthur DM (1970) J Electrochem Soc 117:422–426CrossRefGoogle Scholar
  37. 37.
    Jensen MH, Osvath P, Sargeson AM, Ulstrup J (1994) J Electroanal Chem 377:131–141CrossRefGoogle Scholar
  38. 38.
    Funt BL, Hoang PM (1984) J Electrochem Soc 131:2295–2298CrossRefGoogle Scholar
  39. 39.
    Tsai CC, Wang GJ (2013) J Electrochem Soc 160:B1–B5CrossRefGoogle Scholar
  40. 40.
    Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Shao C, Liu Y (2011) J Colloid Interface Sci 356:706–712CrossRefGoogle Scholar
  41. 41.
    Jayalakshmi M, Rao MM, Choudary B (2004) Electrochem Commun 6:1119–1122CrossRefGoogle Scholar
  42. 42.
    Reddy ALM, Ramaprabhu S (2007) J Phys Chem C 111:7727–7734CrossRefGoogle Scholar
  43. 43.
    Senthilkumar ST, Selvan RK, Lee YS, Melo JS (2013) J Mater Chem A 1:1086–1095CrossRefGoogle Scholar
  44. 44.
    Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Chem Mater 21:3228–3233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suzhen Ren
    • 1
  • Meng Wang
    • 1
  • Meiling Xu
    • 1
  • Ying Yang
    • 1
  • Cuiying Jia
    • 2
  • Ce Hao
    • 1
  1. 1.College of ChemistryDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Experiment Center of ChemistryDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations