Journal of Solid State Electrochemistry

, Volume 18, Issue 3, pp 665–672 | Cite as

Coal tar residues-based nanostructured activated carbon/Fe3O4 composite electrode materials for supercapacitors

  • Yuhao Wang
  • Ping He
  • Xiaomei Zhao
  • Wen Lei
  • Faqin Dong
Original Paper


Oxygen-rich activated carbon with a three-dimensional network structure was prepared by chemical activation of coal tar residues with potassium hydroxide and subsequent carbonization treatment. Nanostructured Fe3O4/AC composites were then prepared by simple chemical coprecipitation method and were used as active electrode materials for supercapacitors. The electrochemical behaviors of Fe3O4/AC nanocomposites were characterized by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy in 1.0 M Na2SO3 electrolyte. It was shown that the specific capacitance of Fe3O4/AC nanocomposites reached 150 F g−1 at a current density of 3.0 A g−1 and was a great improvement over Fe3O4 or AC alone. Furthermore, as-prepared Fe3O4/AC nanocomposites exhibited long cycle life without obvious capacitance fading even after 1,000 charge/discharge cycles. Compared with pure Fe3O4 and AC, the significant enhanced electrochemical performance of Fe3O4/AC nanocomposites could be reasonably attributed to the positive synergetic effect between Fe3O4 and AC.


Coal tar residues Chemical activation Activated carbon Ferroferric oxide Supercapacitor 



This work was supported by the Open Project of Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education (11zxgk11) and the Foundation from the Technology R&D Program of Sichuan Province (No. 2010GZ0300). We are also grateful for the help of Analytical and Testing Center of Southwest University of Science and Technology.


  1. 1.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  2. 2.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nat Mater 4:366–367CrossRefGoogle Scholar
  3. 3.
    Miller JR, Simon P (2008) Science 321:651–652CrossRefGoogle Scholar
  4. 4.
    Kibi Y, Saito T, Kurata M, Tabuchi J, Ochi A (1996) J Power Sources 60:219–224CrossRefGoogle Scholar
  5. 5.
    Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109–116CrossRefGoogle Scholar
  6. 6.
    Conway BE (1991) J Electrochem Soc 138:1539–1548CrossRefGoogle Scholar
  7. 7.
    Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66:1–14CrossRefGoogle Scholar
  8. 8.
    Mitani S, Lee SL, Yoon SH, Korai Y, Mochida I (2004) J Power Sources 133:298–301CrossRefGoogle Scholar
  9. 9.
    Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  10. 10.
    Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537–1541CrossRefGoogle Scholar
  11. 11.
    Liu HT, He P, Li ZY, Liu Y, Li JH (2006) Electrochim Acta 51:1925–1931CrossRefGoogle Scholar
  12. 12.
    Kalpana D, Cho SH, Lee SB, Lee YS, Misra R, Renganathan NG (2009) J Power Sources 190:587–591CrossRefGoogle Scholar
  13. 13.
    Rodriguez-Reinoso F, Molina-Sabio M (1992) Carbon 30:1111–1118CrossRefGoogle Scholar
  14. 14.
    Caturla F, Molina-Sabio M, Rodriguez-Reinoso F (1991) Carbon 29:999–1007CrossRefGoogle Scholar
  15. 15.
    LLLan-Gomez MJ, Garcia-Garcia A, Salinas-Martinez DC, Linares-Solano A (1996) Energy Fuels 10:1108–1114CrossRefGoogle Scholar
  16. 16.
    Ahmadpour A, Do DD (1996) Carbon 34:471–479CrossRefGoogle Scholar
  17. 17.
    Wu QF, Liu YF, Hu ZH (2013) J Solid State Electrochem 17:1711–1716CrossRefGoogle Scholar
  18. 18.
    Wang Q, Wen ZH, Li JH (2006) Adv Funct Mater 16:2141–2146CrossRefGoogle Scholar
  19. 19.
    Lu XH, Zheng DZ, Zhai T, Liu ZQ, Huang YY, Xie SL, Tong YX (2011) Energy Environ Sci 4:2915–2921CrossRefGoogle Scholar
  20. 20.
    Adekunle AS, Ozoemena KI, Agboola BO (2013) J Solid State Electrochem 17:1311–1320CrossRefGoogle Scholar
  21. 21.
    He P, Xie ZW, Chen YT, Dong FQ, Liu HT (2012) Mater Chem Phys 137:576–579CrossRefGoogle Scholar
  22. 22.
    Shi WH, Zhu JX, Sim DH, Tay YY, Lu ZY, Zhang XJ, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan QY (2011) J Mater Chem 21:3422–3427CrossRefGoogle Scholar
  23. 23.
    Chen ML, He YJ, Chen XW, Wang JH (2012) Langmuir 28:16469–16476CrossRefGoogle Scholar
  24. 24.
    Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  25. 25.
    Mu JB, Chen B, Guo ZC, Zhang MY, Zhang ZY, Zhang P, Shao CL, Liu YC (2011) Nanoscale 3:5034–5040CrossRefGoogle Scholar
  26. 26.
    Gao L, Dong FQ, Dai QW, Zhong GQ, Zhang W (2012) J Funct Mater 43:152–155Google Scholar
  27. 27.
    Kim YH, Park SJ (2011) Curr Appl Phys 11:462–466CrossRefGoogle Scholar
  28. 28.
    Wu NL, Wang SY, Han CY, Wu DS, Shiue LR (2003) J Power Sources 113:173–178CrossRefGoogle Scholar
  29. 29.
    He CX, Song SQ, Liu JC, Maragou V, Tsiakaras P (2010) J Power Sources 195:7409–7414CrossRefGoogle Scholar
  30. 30.
    Teo PS, Lim HN, Huang NM, Chia CH, Harrison I (2012) Ceram Int 38:6411–6416CrossRefGoogle Scholar
  31. 31.
    Liu Y, Jiang W, Wang Y, Zhang XJ, Song D, Li FS (2009) J Magn Mater 321:408–412CrossRefGoogle Scholar
  32. 32.
    Sun XM, Liu JF, Li YD (2006) Chem Mater 18:3486–3494CrossRefGoogle Scholar
  33. 33.
    Luo LB, Yu SH, Qian HS, Guo JY (2006) Chem Commun 1:793–795CrossRefGoogle Scholar
  34. 34.
    Ko JM, Kim KM (2009) Mater Chem Phys 114:837–841CrossRefGoogle Scholar
  35. 35.
    Nian YR, Teng HS (2002) J Electrochem Soc 149:A1008–A1014CrossRefGoogle Scholar
  36. 36.
    Zhang K, Zhang LL, Zhao XS, Wu JS (2010) Chem Mater 22:1392–1401CrossRefGoogle Scholar
  37. 37.
    Srinivasan V, Weidner JW (2002) J Power Sources 108:15–20CrossRefGoogle Scholar
  38. 38.
    Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) J Phys Chem C 113:13101–13107Google Scholar
  39. 39.
    Liu X, Zhang N, Ni JF, Gao LJ (2013) J Solid State Electrochem 17:1939–1944CrossRefGoogle Scholar
  40. 40.
    Zhao X, Johnston C, Crossley A, Grant PS (2010) J Mater Chem 20:7637–7644CrossRefGoogle Scholar
  41. 41.
    Tai ZX, Yan XB, Xue QJ (2012) J Electrochem Soc 159:A1702–A1709CrossRefGoogle Scholar
  42. 42.
    Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) ACS Nano 4:1963–1970CrossRefGoogle Scholar
  43. 43.
    Yan J, Wei T, Shao B, Fan ZG, Qian WZ, Zhang MI, Wei F (2010) Carbon 48:487–493CrossRefGoogle Scholar
  44. 44.
    Zhao X, Johnston C, Grant PS (2009) J Mater Chem 19:8755–8760CrossRefGoogle Scholar
  45. 45.
    Chen WC, Wen TC, Teng HS (2003) Electrochim Acta 48:641–649CrossRefGoogle Scholar
  46. 46.
    Liu NP, Shen J, Liu D (2013) Microporous Mesoporous Mater 167:176–181CrossRefGoogle Scholar
  47. 47.
    Yan J, Fan ZG, Sun W, Ning GQ, Wei T, Zhang Q, Zhang RF, Zhi LJ, Wei F (2012) Adv Funct Mater 22:2632–2641CrossRefGoogle Scholar
  48. 48.
    Wen ZH, Li JH (2009) J Mater Chem 19:8707–8713CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuhao Wang
    • 1
  • Ping He
    • 1
  • Xiaomei Zhao
    • 1
  • Wen Lei
    • 1
  • Faqin Dong
    • 1
  1. 1.Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations