Journal of Solid State Electrochemistry

, Volume 18, Issue 3, pp 607–612 | Cite as

Analytical quality solid-state composite reference electrode manufactured by injection moulding

  • Kim GranholmEmail author
  • Zekra Mousavi
  • Tomasz Sokalski
  • Andrzej Lewenstam
Original Paper


An injection moulding method was used for fabricating solid-state reference electrodes (Ag/AgCl type) based on a polymer/inorganic salt composite. In this method, a silver/silver chloride wire was placed inside a mould into which the mixture of polymer and inorganic salt was injected. The obtained solid-state composite reference electrodes were extensively tested to study the influence of different parameters such as solution composition, the concentrations and mobility of ions and pH on the potential stability of the electrodes. These experiments revealed that the composite reference electrodes are insensitive to the matrix effect, have excellent potential readings stability and considerably reduced leakage of inorganic salt. The composite reference electrodes were compared favourably to high-quality commercial reference electrodes. It was concluded that the composite reference electrodes obtained by injection moulding are of analytical quality allowing for continuous, prolonged and intensive usage.


Potentiometry Reference electrode Solid contact Maintenance-free sensor 



The study was supported by the SalWe Research Program for IMO (Tekes—the Finnish Funding Agency for Technology and Innovation grant 648/10). The authors would like to thank Carl-Johan Wikman for his technical assistance with the injection moulding.


  1. 1.
    Inzelt G, Lewenstam A, Scholz F (2013) Handbook of reference electrodes. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Blaz T, Migdalski J, Lewenstam A (2005) Analyst 130:637–643CrossRefGoogle Scholar
  3. 3.
    Anastasova-Ivanova S, Mattinen U, Radu A, Bobacka J, Lewenstam A, Migdalski J, Danielewski M, Diamond D (2010) Sens Actuators B 146:199–205CrossRefGoogle Scholar
  4. 4.
    Diamond D, McEnroe E, McCarrick M, Lewenstam A (1994) Electroanalysis 6:962–971CrossRefGoogle Scholar
  5. 5.
    Bakker E (1999) Electroanalysis 11:788–792CrossRefGoogle Scholar
  6. 6.
    Cicmil D, Anastasova S, Kavanagh A, Diamond D, Mattinen U, Bobacka J, Lewenstam A, Radu A (2011) Electroanalysis 23:1881–1890CrossRefGoogle Scholar
  7. 7.
    Ciobanu M, Wilburn JP, Buss NI, Ditavong P, Lowy DA (2002) Electroanalysis 14:989–997CrossRefGoogle Scholar
  8. 8.
    Ciobanu M, Wilburn JP, Lowy DA (2004) Electroanalysis 16:1351–1358CrossRefGoogle Scholar
  9. 9.
    Guth U, Gerlach F, Decker M, Oelssner W, Vonau W (2009) J Solid State Electrochem 13:27–39CrossRefGoogle Scholar
  10. 10.
    Kisiel A, Marcisz H, Michalska A, Maksymiuk K (2005) Analyst 130:1655–1662CrossRefGoogle Scholar
  11. 11.
    Mattinen U, Bobacka J, Lewenstam A (2009) Electroanalysis 21:1955–1960CrossRefGoogle Scholar
  12. 12.
    Michalska A, Kisiel A, Maksymiuk K (2012) The 14th international meeting on chemical sensors, pp 683–686Google Scholar
  13. 13.
    Rius-Ruiz FX, Kisiel A, Michalska A, Maksymiuk K, Riu J, Rius FX (2011) Anal Bioanal Chem 399:3613–3622CrossRefGoogle Scholar
  14. 14.
    Vonau W, Oelssner W, Guth U, Henze J (2010) Sens Actuators B 144:368–373CrossRefGoogle Scholar
  15. 15.
    Mousavi Z, Granholm K, Sokalski T, Lewenstam A (2013) Analyst 138:5216–5220CrossRefGoogle Scholar
  16. 16.
    Granholm K, Ek P, Sokalski T, Harju L, Bobacka J, Ivaska A (2009) Electroanalysis 21:2014–2021CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kim Granholm
    • 1
    Email author
  • Zekra Mousavi
    • 1
  • Tomasz Sokalski
    • 1
  • Andrzej Lewenstam
    • 1
    • 2
  1. 1.Process Chemistry Centre, c/o Laboratory of Analytical ChemistryÅbo Akademi UniversityTurkuFinland
  2. 2.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations