Journal of Solid State Electrochemistry

, Volume 18, Issue 5, pp 1215–1221 | Cite as

A flow system for hydrogen peroxide production at reticulated vitreous carbon via electroreduction of oxygen

  • Qian Li
  • Christopher Batchelor-McAuley
  • Nathan S. Lawrence
  • Robert S. Hartshorne
  • Charles J. V. Jones
  • Richard G. ComptonEmail author
Original Paper


In this work, a reticulated vitreous carbon electrode (RVCE, 96.5 % porosity, 24 cm−1) was modified with 2-anthraquinonyl groups to electrocatalytically reduce dissolved oxygen in neutral aqueous solution (0.1 M phosphate buffer solution supported with 3 M potassium chloride, pH of 6.7) to hydrogen peroxide (H2O2) at 25 °C under atmospheric pressure. The obtained current density was ca. 3 mA cm−2. For the first time, the oxygen reduction was investigated on a novelly designed RVCE housed in a gravity-feed flow system. Fractional current conversions obtained on the RVC flow cell were compared and contrasted with those on a two-dimensional electrode, viz. a tubular flow electrode. The modified-on catalyst has the benefit in terms of easy separation of the product from the catalyst. The in situ generated low concentration of H2O2 provides potential applications to water purification processes and disinfection for water and food.


Electrosynthesis of hydrogen peroxide Reticulated vitreous carbon Electrochemical oxygen reduction Hydrodynamic flow cell Anthraquinonyl surface modification 



We thank Schlumberger Cambridge Research Limited for funding the study.


  1. 1.
    Hage R, Lienke A (2006) Angew Chem Int Ed 45:206CrossRefGoogle Scholar
  2. 2.
    Jose S (2012) Global Industry Analyst, Global Hydrogen Peroxide Market 09 MarchGoogle Scholar
  3. 3.
    Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962Google Scholar
  4. 4.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York, pp. 369, 8Google Scholar
  5. 5.
    Oloman C (1996) Electrochemical processing for the pulp and paper industry. The Electrochemical Consultancy, Romsey, p 143Google Scholar
  6. 6.
    Yamanaka I, Murayama T (2008) Angew Chem Int Ed 47:1900CrossRefGoogle Scholar
  7. 7.
    Murayama T, Yamanaka I (2011) J Phys Chem C 115:5792CrossRefGoogle Scholar
  8. 8.
    Brillas E, Sirés I, Oturan MA (2009) Chem Rev 109:6570CrossRefGoogle Scholar
  9. 9.
    Gyenge EL, Drillet J-F (2011) J Electrochem Soc 159:F23CrossRefGoogle Scholar
  10. 10.
    Scialdone O, Galia A, Sabatino S (2013) Electrochem Commun 26:45CrossRefGoogle Scholar
  11. 11.
    González-García J, Banks CE, Šljukić B, Compton RG (2007) Ultrason Sonochem 14:405CrossRefGoogle Scholar
  12. 12.
    Li Q, Henstridge MC, Batchelor-McAuley C, Lawrence NS, Hartshorne RS, Compton RG (2013) Phys Chem Chem Phys 15:7854CrossRefGoogle Scholar
  13. 13.
    Wang J (1981) Electrochim Acta 26:1721CrossRefGoogle Scholar
  14. 14.
    Friedrich JM, Ponce-de-León C, Reade GW, Walsh FC (2004) J Electroanal Chem 561:203CrossRefGoogle Scholar
  15. 15.
    Davison JB, Kacsir JM, Peerce–Landers PJ, Jasinski R (1983) J Electrochem Soc 130:1497CrossRefGoogle Scholar
  16. 16.
    Ponce de Leon C, Pletcher D (1995) J Applied Electrochem 25:307Google Scholar
  17. 17.
    Alvarez-Gallegos A, Pletcher D (1998) Electrochim Acta 44:853CrossRefGoogle Scholar
  18. 18.
    Huissoud A, Tissot P (1998) J Applied Electrochem 28:653CrossRefGoogle Scholar
  19. 19.
    Gyenge EL, Oloman CW (2005) J Electrochem Soc 152:D42CrossRefGoogle Scholar
  20. 20.
    Gyenge EL, Oloman CW (2003) J Appl Electrochem 33:655CrossRefGoogle Scholar
  21. 21.
    Saleh MM, Awad MI, Ohsaka T (2007) ECS Transactions 3:67CrossRefGoogle Scholar
  22. 22.
    Awad M, Saleh M, Ohsaka T (2008) J Solid State Electrochem 12:251CrossRefGoogle Scholar
  23. 23.
    Li Q, Batchelor-McAuley C, Lawrence NS, Hartshorne RS, Compton RG (2011) New J Chem 35:2462CrossRefGoogle Scholar
  24. 24.
    Lehr J, Williamson BE, Downard AJ (2011) J Phys Chem C 115:6629CrossRefGoogle Scholar
  25. 25.
    Compton RG, Unwin PR (1986) J Electroanal Chem 205:1CrossRefGoogle Scholar
  26. 26.
    Fisher AC, Compton RG (1991) J Phys Chem 95:7538CrossRefGoogle Scholar
  27. 27.
    Cooper JA, Compton RG (1998) Electroanalysis 10:141CrossRefGoogle Scholar
  28. 28.
    Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood CliffsGoogle Scholar
  29. 29.
    Compton RG, Banks CE (2011) Understanding voltammetry, 2nd edn. Imperial College Press, LondonCrossRefGoogle Scholar
  30. 30.
    Li Q, Batchelor-McAuley C, Lawrence NS, Hartshorne RS, Compton RG (2011) ChemPhysChem 12:1255CrossRefGoogle Scholar
  31. 31.
    Trevor Wilson JZ, Oloman CC, Wayner DDM (2006) Int J Electrochem Sci 1:99Google Scholar
  32. 32.
    Millero F, Huang F, Graham T (2003) J Solution Chem 32:473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qian Li
    • 1
  • Christopher Batchelor-McAuley
    • 1
  • Nathan S. Lawrence
    • 2
  • Robert S. Hartshorne
    • 2
  • Charles J. V. Jones
    • 1
  • Richard G. Compton
    • 1
    Email author
  1. 1.Department of Chemistry, Physical and Theoretical Chemistry LaboratoryOxford UniversityOxfordUK
  2. 2.Schlumberger Cambridge ResearchCambridgeUK

Personalised recommendations