Advertisement

Journal of Solid State Electrochemistry

, Volume 17, Issue 12, pp 3191–3198 | Cite as

Influence of the microstructure and its stability on the electrochemical properties of EMD produced from a range of precursors

  • A. Biswal
  • B. C. Tripathy
  • K. Sanjay
  • D. Meyrick
  • T. Subbaiah
  • M. Minakshi
Original Paper

Abstract

The influence of the microstructure and the stable crystal structure on the electrochemical properties of the electrolytic manganese dioxide (EMD) produced from manganese cake (EMDMC), low-grade manganese ore (EMDLMO), and synthetic manganese sulfate solutions (EMDSMS) is reported. X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry/differential thermal analysis, field emission scanning electron microscopy (FESEM), and chemical analyses were used to determine the structural and chemical characteristics of the EMD samples. The charge–discharge profile was studied in 9 M KOH using a galvanostatic charge–discharge unit. All the samples were found to contain predominantly γ-phase MnO2, which is electrochemically active for energy storage applications. FESEM images show that preparation method significantly influences surface morphology, shape, and size of the EMD particles. In almost all cases, nanoparticles were obtained, with spindle-shaped nanoparticles for EMDMC, platy nanoparticles in the case of EMDLMO, and anisotropic growth of tetra-branched star-like nanoparticles of EMDSMS. These nanoparticles arrange themselves in a near net-like fashion, resulting in porosity of the flakes of EMD during electrochemical deposition. Thermal studies showed loss of structural water and formation of lower manganese oxides. The EMDMC showed superior discharge capacity of ~280 mAh g−1 as compared to EMDLMO (275 mAh g−1) and EMDSMS (245 mAh g−1).

Keywords

Electrolytic manganese dioxide Manganese cake Manganese ore Manganese sulfate Nano-flakes Discharge capacity 

Notes

Acknowledgments

The authors would like to thank the Director, CSIR-IMMT for his interest and encouragement in publishing this work. One of the authors (A.B..) would like to thank CSIR for providing Senior Research Fellowship for carrying out his doctoral research. The author (M.M.) wishes to acknowledge the Australian Research Council (ARC). This research was supported under Australian Research Council (ARC) Discovery Project funding scheme (DP1092543).

References

  1. 1.
    Dose WM, Lehr J, Donne SW (2012) Mater Res Bull 47:1827–1834CrossRefGoogle Scholar
  2. 2.
    Minakshi M, Singh P, Issa TB, Thurgate S, De Marco R (2004) J Power Sourc 130:254–259CrossRefGoogle Scholar
  3. 3.
    Minakshi M (2008) J Electroanal Chem 616:99–106CrossRefGoogle Scholar
  4. 4.
    Brito PSD, Patricio S, Rodrigues LF, Sequeira AC (2012) Surf Coating Tech 206:3036–3047CrossRefGoogle Scholar
  5. 5.
    Ward CB, Walker AI, Taylor AR (1992) Prog Batt Batt Mater 11:40–46Google Scholar
  6. 6.
    Zhang W, Chu YC (2007) Hydrometallurgy 89:137–159CrossRefGoogle Scholar
  7. 7.
    Sharma MM, Krishnan B, Zachariah S, Shan CU (1999) J Power Sourc 79:69–74CrossRefGoogle Scholar
  8. 8.
    Thackeray MM (1997) Prog Solid State Chem 25:1–7CrossRefGoogle Scholar
  9. 9.
    Chabre Y, Pannetier J (1995) Prog Solid State Chem 23:1–9CrossRefGoogle Scholar
  10. 10.
    Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) J Phys Chem B 109:20207–20214CrossRefGoogle Scholar
  11. 11.
    Ghaemi M, Biglari Z, Binder L (2001) J Power Sourc 102:29–34CrossRefGoogle Scholar
  12. 12.
    Biswal A, Sanjay K, Ghosh MK, Subbaiah T, Mishra BK (2011) Hydrometallurgy 110:44–49CrossRefGoogle Scholar
  13. 13.
    Chen S, Zhu J, Han Q, Zheng Z, Yang Y, Wang X (2009) Cryst Growth Des 9:4356–4361CrossRefGoogle Scholar
  14. 14.
    Abbas H, Nasser SA (1991) J Power Sourc 58:15–21CrossRefGoogle Scholar
  15. 15.
    Fernandes JB, Desai BD, Dalal VNK (1985) Electrochim Acta 28:309–315CrossRefGoogle Scholar
  16. 16.
    Ananth MV, Pethkar S, Dakshinamuthi K (1998) J Power Sourc 75:278–282CrossRefGoogle Scholar
  17. 17.
    Narita E, Okabe T (1980) Bull Chem Soc Jpn 53:525–532CrossRefGoogle Scholar
  18. 18.
    Ruetschi P (1984) J Electrochem Soc 131:2737–2744CrossRefGoogle Scholar
  19. 19.
    Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444–450CrossRefGoogle Scholar
  20. 20.
    Lee JA, Newnham CE, Stone FS, Tye FL (1973) J Colloid Interface Sci 45:289–294CrossRefGoogle Scholar
  21. 21.
    Brenet JP, Faber P (1995) Symp. I.S.E. Batteries Marcoussis, FranceGoogle Scholar
  22. 22.
    Sharp JH, Tinsley DM (1971) J Therm Anal 3:43–48CrossRefGoogle Scholar
  23. 23.
    Fernandes JB, Desai BD, Dalal VNK (1985) Electrochim Acta 29:187–193CrossRefGoogle Scholar
  24. 24.
    Kordesch K, Gsellmann J, Peri M, Tomantschger K, Chemelli R (1981) Electrochim Acta 10:1495–1504CrossRefGoogle Scholar
  25. 25.
    Minakshi M, Singh P, Carter M, Prince K (2008) Electrochem Solid State Lett 11:A145–A149CrossRefGoogle Scholar
  26. 26.
    Mondolini C, Laborde M, Rioux J, Andoni E, Levy-Clement C (1992) J Electrochem Soc 139:954–959CrossRefGoogle Scholar
  27. 27.
    Urfer A, Lawrence GA, Swinkles DAJ (1997) J Appl Electrochem 27:667–672CrossRefGoogle Scholar
  28. 28.
    Li H, Wang Y, He P, Zhou H (2010) Chem Comm 46:2055–2057CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Biswal
    • 1
    • 2
  • B. C. Tripathy
    • 1
    • 2
  • K. Sanjay
    • 1
  • D. Meyrick
    • 3
  • T. Subbaiah
    • 1
    • 2
  • M. Minakshi
    • 3
  1. 1.CSIR—Institute of Minerals and Materials Technology, Council of Scientific and Industrial ResearchBhubaneswarIndia
  2. 2.Academy of Scientific and Innovative Research, Anusandhan Bhavan, Rafi MargNew DelhiIndia
  3. 3.School of Chemical and Mathematical SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations