Journal of Solid State Electrochemistry

, Volume 18, Issue 1, pp 49–58 | Cite as

Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors

  • Li Sun
  • Chunlei Wang
  • Ying ZhouEmail author
  • Qiang Zhao
  • Xu Zhang
  • Jieshan QiuEmail author
Original Paper


Activated nitrogen-doped carbons (ANCs) were prepared by carbonization/activation approach using aminated polyvinyl chloride (PVC) as precursor. ANCs exhibit larger porosities and higher specific surface areas than those of their nitrogen-free counterparts for the same KOH/carbon ratio. The specific surface area of ANC-1 is up to 1,398 m2 g−1 even at a low KOH/carbon ratio of 1:1. Fourier transform infrared spectroscopy investigation of the nitrogen-enriched resin precursor indicates the efficient dehydrochlorination of PVC by ethylenediamine at a low temperature. The nitrogen content and the population of nitrogen functionalities strongly depend on the KOH/carbon ratios and decrease drastically after KOH activation as seen from the elemental and X-ray photoelectron spectroscopy analysis. The surface concentration of N-6 and N-Q almost disappears and the dominant nitrogen groups become N-5 after KOH activation. The highest specific capacitance of ANCs is up to 345 F g−1 at a current density of 50 mA g−1 in 6 M KOH electrolyte. ANCs also exhibit a good capacitive behavior at a high scan rate of 200 mV s−1 and an excellent cyclability with a capacitance retention ratio as high as ∼93 % at a current density of 2,000 mA g−1 for 5,000 cycles.


Activated nitrogen-doped carbon Activation Polyvinyl chloride Electrochemical capacitor 



This work was supported by the National Natural Science Foundation of China (nos. 20836002, 21003016, and 21276045), the Dalian Science and Technology Bureau of China (no. 2011A15GX023), and China Postdoctoral Science Foundation (no. 20100481227).


  1. 1.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar
  3. 3.
    Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRefGoogle Scholar
  4. 4.
    Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447CrossRefGoogle Scholar
  5. 5.
    Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785CrossRefGoogle Scholar
  6. 6.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  7. 7.
    Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195:7880–7903CrossRefGoogle Scholar
  8. 8.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850CrossRefGoogle Scholar
  9. 9.
    Jurewicz K, Babeł K, Źiółkowski A, Wachowska H (2003) Ammoxidation of active carbons for improvement of supercapacitor characteristics. Electrochim Acta 48:1491–1498CrossRefGoogle Scholar
  10. 10.
    Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17:1241–1247CrossRefGoogle Scholar
  11. 11.
    Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206CrossRefGoogle Scholar
  12. 12.
    Qiao WM, Yoon SH, Mochida I, Yang JH (2007) Waste polyvinylchloride derived pitch as a precursor to develop carbon fibers and activated carbon fibers. Waste Manage 27:1884–1890CrossRefGoogle Scholar
  13. 13.
    Lingaiah N, Uddin MA, Morikawa K, Muto A, Murata K, Sakata Y (2001) Catalytic dehydrochlorination of chloro-organic compounds from PVC containing waste plastics derived fuel oil over FeCl2/SiO2 catalyst. Green Chem 3:74–75CrossRefGoogle Scholar
  14. 14.
    Ahmad Z, Manzoor W (1992) Thermogravimetric analysis of ZnCl2 catalyzed degradation of PVC. J Therm Anal Calorim 38:2349–2357CrossRefGoogle Scholar
  15. 15.
    McNeill IC, Memetea L, Cole WJ (1995) A study of the products of PVC thermal degradation. Polym Degrad Stabil 49:181–191CrossRefGoogle Scholar
  16. 16.
    Dietrich B (2002) Recycling of PVC. Prog Polym Sci 27:2171–2195CrossRefGoogle Scholar
  17. 17.
    Iguchi K, Tsunoda R, Takeshit S (1974) Preparation of activated carbon from polyvinyl-chloride. Int Chem Eng 14:381–385Google Scholar
  18. 18.
    Qiao WM, Song Y, Yoon SH, Korai Y, Mochida I, Yoshiga S, Fukuda H, Yamazaki A (2006) Carbonization of waste PVC to develop porous carbon material without further activation. Waste Manage 26:592–598CrossRefGoogle Scholar
  19. 19.
    Lian F, Xing BS, Zhu LY (2011) Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. J Colloid Interface Sci 360:725–730CrossRefGoogle Scholar
  20. 20.
    Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493CrossRefGoogle Scholar
  21. 21.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  22. 22.
    Fey GTK, Lee DC, Lin YY, Kumar TP (2003) High-capacity disordered carbons derived from peanut shells as lithium-intercalating anode materials. Synthetic Met 139:71–80CrossRefGoogle Scholar
  23. 23.
    Bonhomme F, Lassègues JC, Servant L (2001) Raman spectroelectrochemistry of a carbon supercapacitor. J Electrochem Soc 148:E450–E458CrossRefGoogle Scholar
  24. 24.
    Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761CrossRefGoogle Scholar
  25. 25.
    Lozano-Castelló D, Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite I. Activation by KOH Carbon 39:741–749Google Scholar
  26. 26.
    Alonso A, Ruiz V, Blanco C, Santamaría R, Granda M, Menéndez R, de Jager SGE (2006) Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors. Carbon 44:441–446CrossRefGoogle Scholar
  27. 27.
    Kryazhev YG, Solodovnichenko VS, Antonicheva NV, Gulyaeva TI, Drozdov VA, Likholobov VA (2009) Evolution of the structures and sorption properties of dehydrochlorinated chloropolymers during their thermal conversions. Prot Met Phys Chem 45:398–402CrossRefGoogle Scholar
  28. 28.
    Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I (2004) Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor. J Power Sources 133:298–301CrossRefGoogle Scholar
  29. 29.
    Jiang J, Gao Q, Xia K, Hu J (2009) Enhanced electrical capacitance of porous carbons by nitrogen enrichment and control of the pore structure. Micropor Mesopor Mater 118:28–34CrossRefGoogle Scholar
  30. 30.
    Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41:267–275CrossRefGoogle Scholar
  31. 31.
    Zeng XH, Wu DC, Fu RW, Lai HJ, Fu JJ (2008) Preparation and electrochemical properties of pitch-based activated carbon aerogels. Electrochim Acta 53:5711–5715CrossRefGoogle Scholar
  32. 32.
    Xue R, Shen Z (2003) Formation of graphite-potassium intercalation compounds during activation of MCMB with KOH. Carbon 41:1862–1864CrossRefGoogle Scholar
  33. 33.
    Kakuta N, Shimizu A, Ohkita H, Mizushima T (2009) Dehydrochlorination behavior of polyvinyl chloride and utilization of carbon residue: effect of plasticizer and inorganic filler. J Mater Cycles Waste 11:23–26CrossRefGoogle Scholar
  34. 34.
    Hong J-H, Hong S-K (2010) Preparation of anion exchange membrane by amination of chlorinated polypropylene and ethylenediamine and its properties. J Appl Polym Sci 115:2296–2301CrossRefGoogle Scholar
  35. 35.
    Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A (2005) Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 26:3495–3502CrossRefGoogle Scholar
  36. 36.
    Demir-Cakan R, Makowski P, Antonietti M, Goettmann F, Titirici M-M (2010) Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis. Catal Today 150:115–118CrossRefGoogle Scholar
  37. 37.
    Biniak S, Szymański G, Śiedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810CrossRefGoogle Scholar
  38. 38.
    Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653CrossRefGoogle Scholar
  39. 39.
    László K, Tombácz E, Josepovits K (2001) Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39:1217–1228CrossRefGoogle Scholar
  40. 40.
    Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120:379–382CrossRefGoogle Scholar
  41. 41.
    Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Colloidal crystal-templated porous carbon as a high performance electrical double-layer capacitor material. Electrochem Solid St 7:A221–A223CrossRefGoogle Scholar
  42. 42.
    Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597CrossRefGoogle Scholar
  43. 43.
    Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195:912–918CrossRefGoogle Scholar
  44. 44.
    Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507CrossRefGoogle Scholar
  45. 45.
    Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations