Journal of Solid State Electrochemistry

, Volume 17, Issue 11, pp 2879–2886 | Cite as

Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors

  • S. Khamlich
  • A. Bello
  • M. Fabiane
  • B. D. Ngom
  • N. Manyala
Original Paper


Nickel foam-graphene (NF-G) was synthesized by chemical vapour deposition followed by facial in situ aqueous chemical growth of simonkolleite (Zn5(OH)8Cl2·H2O) under hydrothermal conditions to form NF-G/simonkolleite composite. X-ray diffraction and Raman spectroscopy show the presence of simonkolleite on the NF-G, while scanning and transmission electron microscopies show simonkolleite micro-plates like structure evenly distributed on the NF-G. Electrochemical measurements of the composite electrode give a specific capacitance of 350 Fg−1 at current density of 0.7 Ag−1 for our device measured in three-electrode configuration. The composite also shows a rate capability of ~87 % capacitance retention at a high current density of 5 Ag−1, which makes it a promising candidate as an electrode material for supercapacitor applications.


Graphene Composite structure Simonkolleite Supercapacitor 



This work was financially supported by the Vice-Chancellor of the University of Pretoria and the National Research Foundation (NRF) of South Africa.


  1. 1.
    Miller JR, Burke AF (2008) Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. Electrochem. Soc Interf 17:53–57Google Scholar
  2. 2.
    Masarapu C, Zeng HF, Hung KH, Wei BQ (2009) Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 3:2199–2206CrossRefGoogle Scholar
  3. 3.
    Li GR, Feng ZP, Ou YN, Wu DC, Fu RW, Tong YX (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26:2209–2213CrossRefGoogle Scholar
  4. 4.
    Du X, Guo P, Song HH, Chen XH (2010) Graphene nanosheets as electrode material for electric double-layer capacitors. Electrochim Acta 55:4812–4819CrossRefGoogle Scholar
  5. 5.
    Gao YY, Chen SL, Cao DX, Wang GL, Yin JL (2010) Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources 195:1757–1760CrossRefGoogle Scholar
  6. 6.
    Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z (2010) Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim Acta 55:6973–6978CrossRefGoogle Scholar
  7. 7.
    Wang DC, Ni WB, Pang H, Lu QY, Huang ZJ, Zhao JW (2010) Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim Acta 55:6830–6835CrossRefGoogle Scholar
  8. 8.
    Pico F, Ibanez J, Rodenas L, Linares-Solano A, Rojas RM, Amarilla JM, Rojo JM (2008) Understanding RuO2·xH2O/carbon nanofibre composites as supercapacitor electrodes. J. Power Sources 176:417–425CrossRefGoogle Scholar
  9. 9.
    Li FH, Song JF, Yang HF, Gan SY, Zhang QX, Han DX, Ivaska A, Niu L (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20:455602–455607CrossRefGoogle Scholar
  10. 10.
    Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833CrossRefGoogle Scholar
  11. 11.
    Qu QT, Shi Y, Li LL, Guo WL, Wua YP, Zhang HP, Guan SY, Holze R (2009) V2O5.0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4 solution. Electrochem Commun 11:1325–1328CrossRefGoogle Scholar
  12. 12.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRefGoogle Scholar
  13. 13.
    Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992CrossRefGoogle Scholar
  14. 14.
    Lake JR, Cheng A, Selverston S, Tanaka Z, Koehne J, Meyyappan M, Che B (2012) Graphene metal oxide composite supercapacitor electrodes. J Vac Sci Technol B 30:03D118Google Scholar
  15. 15.
    Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem 21:3422–3427CrossRefGoogle Scholar
  16. 16.
    Zhu J, Zhu T, Zhou X, Zhang Y, Lou XW, Chen X, Zhang H, Hng HH, Yan Q (2011) Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3:1084–1089CrossRefGoogle Scholar
  17. 17.
    Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477CrossRefGoogle Scholar
  18. 18.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  19. 19.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRefGoogle Scholar
  20. 20.
    Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561CrossRefGoogle Scholar
  21. 21.
    Dong X, Cao Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364–4369CrossRefGoogle Scholar
  22. 22.
    Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428CrossRefGoogle Scholar
  23. 23.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Graphene films with large domain size by a two-step chemical vapor deposition process. Science 324:1312–1314CrossRefGoogle Scholar
  24. 24.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  25. 25.
    Huang X, Qi XY, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686CrossRefGoogle Scholar
  26. 26.
    Pérez C, Collazo A, Izquierdo M, Merino P, Nóvoa XR (2000) Electrochemical impedance spectroscopy study of the corrosion process on coated galvanized steel in a salt spray fog chamber. Corros 56:1220–1232CrossRefGoogle Scholar
  27. 27.
    Zhu F, Persson D, Thierry D, Taxen C (2000) Formation of corrosion products on open and confined zinc surfaces exposed to periodic wet/dry conditions. Corros 56:1256–1265CrossRefGoogle Scholar
  28. 28.
    Hawthorne FC, Sokolova E (2002) Simonkolleite, Zn5(OH)8Cl2(H2O), a decorated interrupted-sheet structure of the form [Mφ2]4. Can Mineral 40:939–946CrossRefGoogle Scholar
  29. 29.
    Sithole J, Ngom BD, Khamlich S, Manikanadan E, Manyala N, Saboungi ML, Knoessen D, Nemutudi R, Maaza M (2012) Simonkolleite nano-platelets: synthesis and temperature effect on hydrogen gas sensing properties. App Surf Sci 258:7839–7843CrossRefGoogle Scholar
  30. 30.
    Nowacki W, Silverman JN (1961) Die kristallstruktur von zinkhydroxychlorid II Zn5(OH)8Cl2.1H2O. Z Krist 115:21–51CrossRefGoogle Scholar
  31. 31.
    Allmann R (1968) Verfeinerung der Struktur des Zinkhydroxidchlorids II Zn5(OH)8 Cl2.1H2O. Z Krist 126:417–426CrossRefGoogle Scholar
  32. 32.
    Wu YP, Wang B, Ma YF, Huang Y, Li N, Zhang F, Chen YS (2010) Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res 3:661–669CrossRefGoogle Scholar
  33. 33.
    Dong XC, Shi YM, Chen P, Ling QD, Huang W (2010) Aromatic molecules doping in single-layer graphene probed by Raman spectroscopy and electrostatic force microscopy. J J Appl Phys 49:01AH04Google Scholar
  34. 34.
    Wei D, Mitchell JI, Tansarawiput C, Nam W, Qi M, Ye PD, Xu X (2013) Laser direct synthesis of graphene on quartz. Carbon 53:374–379CrossRefGoogle Scholar
  35. 35.
    Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRefGoogle Scholar
  36. 36.
    Bernard MC, Hugot-Le Goff A, Massinon D, Phillips N (1993) Underpaint corrosion of zinc-coated steel sheet studied by in situ Raman spectroscopy. Corros Sci 35:1339–1349CrossRefGoogle Scholar
  37. 37.
    Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, Zhao X (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. J Chem Eur 17:10898–905CrossRefGoogle Scholar
  38. 38.
    Brownson Dale AC, Figueiredo-Filho Luiz CS, Ji X, Gómez-Mingot M, Iniesta J, Fatibello-Filho O, Kampouris DK, Banks CE (2013) Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. J Mater Chem A 1:5962–5972CrossRefGoogle Scholar
  39. 39.
    Lang JW, Kong LB, Wu WJ, Liu M, Luo YC, Kang L (2009) A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J Solid State Electrochem 13:333–340CrossRefGoogle Scholar
  40. 40.
    Li X, Rong J, Wei B (2010) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4:6039–6049CrossRefGoogle Scholar
  41. 41.
    Choi BG, Hong J, Hong WH, Hammond PT, Park H (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5:7205–7213CrossRefGoogle Scholar
  42. 42.
    Frackowiak E, Begguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.SARChI Chair in Carbon Technology and Materials, Institute of Applied Materials, Department of PhysicsUniversity of PretoriaHatfieldSouth Africa
  2. 2.NANOAFNET, MRD-iThemba LABSNational Research FoundationSomerset WestSouth Africa

Personalised recommendations