Journal of Solid State Electrochemistry

, Volume 17, Issue 11, pp 2959–2965 | Cite as

Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries

  • Qiang Li
  • Zhian Zhang
  • Kai Zhang
  • Lei Xu
  • Jing Fang
  • Yanqing Lai
  • Jie Li
Original Paper


Titania–sulfur (TiO2–S) composite cathode materials were synthesized for lithium–sulfur batteries. The composites were characterized and examined by X-ray diffraction, nitrogen adsorption/desorption measurements, scanning electron microscopy, and electrochemical methods, such as cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. It is found that the mesoporous TiO2 and sulfur particles are uniformly distributed in the composite after a melt-diffusion process. When evaluating the electrochemical properties of as-prepared TiO2–S composite as cathode materials in lithium–sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The results showed that an initial discharge specific capacity of 1,460 mAh/g at 0.2 C and capacity retention ratio of 46.6 % over 100 cycles of composite cathode, which are higher than that of pristine sulfur. The improvements of electrochemical performances were due to the good dispersion of sulfur in the pores of TiO2 particles and the excellent adsorbing effect on polysulfides of TiO2.


Lithium–sulfur batteries Mesoporous TiO2 TiO2–sulfur composite Polysulfides 



The authors thank the financial support of the Strategic Emerging Industries Program of Shenzhen, China (JCYJ20120618164543322) and the Science and technology project of Hunan Province (2011FJ3151). We also thank the support of the Engineering Research Center of Advanced Battery Materials, the Ministry of Education, China.


  1. 1.
    Dharmasena P, Stuart L (1993) Science 261:1029–1032CrossRefGoogle Scholar
  2. 2.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Nat Mater 11:19–29CrossRefGoogle Scholar
  3. 3.
    Ji XL, Nazar LF (2010) J Mater Chem 20:9821–9826CrossRefGoogle Scholar
  4. 4.
    Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A796–799Google Scholar
  5. 5.
    Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A800–A805CrossRefGoogle Scholar
  6. 6.
    Elazari R, Salitra G, Talyosef Y, Grinblat J, Charislea SK, Xiao A, Affinito J, Aurbach D (2010) J Electrochem Soc 157:A1131–1138Google Scholar
  7. 7.
    Mikhaylik YV, Akridge JR (2004) J Electrochem Soc 151:A1969–A1976CrossRefGoogle Scholar
  8. 8.
    Barchasz C, Leprêtreb JC, Alloinb F, Patoux S (2012) J Power Sources 199:322–330CrossRefGoogle Scholar
  9. 9.
    Gorkovenko A, Skotheim TA, Xu ZS (2005) US Patent No 6878488Google Scholar
  10. 10.
    Zheng W, Liu YW, Hu XG, Zhang CF (2006) Electrochimica Acta 51:1330–1335CrossRefGoogle Scholar
  11. 11.
    Ji XL, Evers S, Black R, Nazar LF (2011) Nat Commun 2:325. doi: 10.1038/ncomms1293 CrossRefGoogle Scholar
  12. 12.
    Zhang YG, Bakenov Z, Zhao Y, Konarov A, Doan TNL, Sun KEK, Yermukhambetova A, Chen P (2013) Powder Technol 235:248–255CrossRefGoogle Scholar
  13. 13.
    Zhang YG, Zhao Y, Yermukhambetova A, Bakenov Z, Chen P (2013) J Mater Chem 1:A295–A301CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Wu XB, Feng H, Wang LZ, Zhang AQ, Xia TC, Dong HC (2009) Int J Hydrogen Energy 34:1556–1559CrossRefGoogle Scholar
  15. 15.
    Choi YJ, Jung BS, Lee DJ, Jeong JH, Kim KW, Ahn HJ, Cho KK, Gu HB (2007) Phys Scr T129:62–65CrossRefGoogle Scholar
  16. 16.
    Kang D, Sheng PW, Hanyu Z, Wu JP (2013) Mater Res Bull 48:2079–2083CrossRefGoogle Scholar
  17. 17.
    Zheng W, Hu XG, Zhang CF (2006) Electrochem Solid State Lett 9:A364–A367CrossRefGoogle Scholar
  18. 18.
    Scott E, Taeeun Y, Nazar LF (2012) J Phys Chem C 116:19653–19658CrossRefGoogle Scholar
  19. 19.
    Zhi WS, Li WY, Judy JC, Zheng GG, Yuan Y, Matthew TM, Po CH, Cui Y (2013) Nat Commun 4:1331–1336CrossRefGoogle Scholar
  20. 20.
    Vijayalakshmi R, Rajendran V (2012) Arch Appl Sci Res 4:1183–1190Google Scholar
  21. 21.
    Wu MS, Lee JT, Chiang PC, Lin JC (2007) J Mater Sci 42:259–265CrossRefGoogle Scholar
  22. 22.
    Deng ZF, Zhang ZA, Lai YQ, Liu J, Liu YX, Li J (2013) Solid State Ionics 238:44–49CrossRefGoogle Scholar
  23. 23.
    Zhang CF, Wu HB, Yu CZ, Guo ZP, Lou WX (2012) Angew Chem Int Ed 51:9592–9595CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Wang LZ, Zhang AQ, Song YH, Li XF, Feng H, Wu XB, Du PP (2010) Solid State Ionics 181:835–838CrossRefGoogle Scholar
  25. 25.
    Jung Y, Kim S (2007) Electrochem Commun 9:249–254CrossRefGoogle Scholar
  26. 26.
    Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) J Electrochem Soc 135:1045–1048CrossRefGoogle Scholar
  27. 27.
    Li YJ, Zhan H, Liu SQ, Huang KL, Zhou YH (2010) J Power Sources 195:2945–2949CrossRefGoogle Scholar
  28. 28.
    James RA, Yuriy VM, Neal W (2004) Solid State Ionics 175:243–245CrossRefGoogle Scholar
  29. 29.
    Doron A, Elad P, Ran E, Gregory S, Scordilis K, John A (2009) J Electrochem Soc 156:A694–A702CrossRefGoogle Scholar
  30. 30.
    Deng ZF, Zhang ZA, Lai YQ, Liu J, Li J, Liu YX (2013) J Electrochem Soc 160:A553–A558CrossRefGoogle Scholar
  31. 31.
    Fu YZ, Manthiram A (2012) Chem Mater 24:3081–3087CrossRefGoogle Scholar
  32. 32.
    Rao M, Song XY, Elton JC (2012) J Power Sources 205:474–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qiang Li
    • 1
  • Zhian Zhang
    • 1
    • 2
  • Kai Zhang
    • 1
  • Lei Xu
    • 1
  • Jing Fang
    • 1
  • Yanqing Lai
    • 1
    • 2
  • Jie Li
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Engineering Research Center of High Performance Battery Materials and DevicesResearch Institute of Central South University in ShenzhenShenzhenChina

Personalised recommendations