Journal of Solid State Electrochemistry

, Volume 17, Issue 11, pp 2865–2870 | Cite as

Solvent autoxidation, electrolyte decomposition, and performance deterioration of the aprotic Li-O2 battery

  • Ding Zhu
  • Lei Zhang
  • Ming Song
  • Xiaofei Wang
  • Jun Mei
  • Leo W. M. Lau
  • Yungui Chen
Original Paper


The electrolyte decomposition is widely recognized as the greatest challenge to the successful development of the aprotic Li-O2 battery. The decomposition of the organic ethers, which are the commonly used electrolyte solvents in the current studies, can be chemical or electrochemical during discharge or charge. In this paper, the influence of oxygen on the decomposition of the ether-based electrolyte is discussed. Ether solvents are found to be oxidized in contact with oxygen whether the cells operate or not. The solvent autoxidation significantly promotes the electrolyte decomposition during the discharge process of the ether-based Li-O2 battery. As a result, the oxygen exposure time before battery operation significantly affects the electrochemical performance of the ether-based Li-O2 battery. After the prolonged exposure to oxygen, both the discharge capacity and the working potential of the battery decrease to some extent. More importantly, the recharge potential of the battery greatly increases with extending the previous oxygen exposure time.


Aprotic Li-O2 battery Ether solvents Autoxidation Electrolyte decomposition Recharge potential 



This study was funded by the Synergistic Innovative Joint Foundation of AEP-SCU (no. 0082604132222).


  1. 1.
    Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5CrossRefGoogle Scholar
  2. 2.
    Park M, Sun H, Lee H, Lee J, Cho J (2012) Adv Energy Mater 2:780–800CrossRefGoogle Scholar
  3. 3.
    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) J Electrochem Soc 159:R1–R30CrossRefGoogle Scholar
  4. 4.
    Girishkumar G, McCloskey BD, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203CrossRefGoogle Scholar
  5. 5.
    Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Electrochemistry 5:403–405CrossRefGoogle Scholar
  6. 6.
    Bryantsev VS, Blanco M (2011) J Phys Chem Lett 2:379–383CrossRefGoogle Scholar
  7. 7.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F, Novak P, Bruce PG (2011) J Am Chem Soc 133:8040–8047CrossRefGoogle Scholar
  8. 8.
    McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2:1161–1166CrossRefGoogle Scholar
  9. 9.
    Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang JG (2011) J Power Sources 196:9631–9639CrossRefGoogle Scholar
  10. 10.
    Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) J Phys Chem A 115:12399–12409CrossRefGoogle Scholar
  11. 11.
    Black R, Oh SH, Lee J-H, Yim T, Adams B, Nazar LF (2012) J Am Chem Soc 134:2902–2905CrossRefGoogle Scholar
  12. 12.
    Schwenke KU, Meini S, Wu X, Gasteiger HA, Piana M (2013) Phys Chem Chem Phys 15:11830–11839CrossRefGoogle Scholar
  13. 13.
    Freunberger SA, Chen YH, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) Angew Chem Int Ed 50:8609–8613CrossRefGoogle Scholar
  14. 14.
    McCloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) J Phys Chem Lett 3:3043–3047CrossRefGoogle Scholar
  15. 15.
    Younesi R, Hahlin M, Björefors F, Johansson P, Edström K (2013) Chem Mater 25:77–84CrossRefGoogle Scholar
  16. 16.
    Sharon D, Etacheri V, Garsuch A, Afri M, Frimer AA, Aurbach D (2013) J Phys Chem Lett 4:127–131CrossRefGoogle Scholar
  17. 17.
    Assary RS, Lau KC, Amine K, Sun YK, Curtiss LA (2013) J Phys Chem C 117:8041–8049CrossRefGoogle Scholar
  18. 18.
    Xu W, Hu J, Engelhard MH, Towne SA, Hardy JS, Xiao J, Feng J, Hu MY, Zhang J, Ding F, Gross ME, Zhang JG (2012) J Power Sources 215:240–247CrossRefGoogle Scholar
  19. 19.
    Younesi R, Hahlin M, Treskow M, Scheers J, Johansson P, Edström K (2012) J Phys Chem C 116:18597–18604CrossRefGoogle Scholar
  20. 20.
    Nasybulin E, Xu W, Engelhard MH, Nie Z, Burton SD, Cosimbescu L, Gross ME, Zhang J-G (2013) J Phys Chem C 117:2635–2645CrossRefGoogle Scholar
  21. 21.
    Black R, Lee JH, Adams B, Mims CA, Nazar LF (2013) Angew Chem Int Ed 52:392–396CrossRefGoogle Scholar
  22. 22.
    Lim H, Yilmaz E, Byon HR (2012) J Phys Chem Lett 3:3210–3215CrossRefGoogle Scholar
  23. 23.
    Li F, Zhang T, Yamada Y, Yamada A, Zhou H (2013) Adv Energy Mater 3:532–538CrossRefGoogle Scholar
  24. 24.
    Veith GM, Nanda J, Delmau LH, Dudney NJ (2012) J Phys Chem Lett 3:1242–1247CrossRefGoogle Scholar
  25. 25.
    Bryantsev VS, Faglioni F (2012) J Phys Chem A 116:7128–7138CrossRefGoogle Scholar
  26. 26.
    Wang H, Xie K (2012) Electrochim Acta 64:29–34CrossRefGoogle Scholar
  27. 27.
    Zhu D, Zhang L, Song M, Wang X, Mi R, Liu H, Mei J, Lau LWM, Chen Y (2013) J Solid State Electrochem. doi: 10.1007/s10008-013-2116-1
  28. 28.
    Song M, Zhu D, Zhang L, Wang X, Huang L, Shi Q, Mi R, Liu H, Mei J, Lau LWM, Chen Y (2013) J Solid State Electrochem 17:2061–2069CrossRefGoogle Scholar
  29. 29.
    Suresh AK, Sharma MM, Sridhar T (2000) Ind Eng Chem Res 39:3958–3997CrossRefGoogle Scholar
  30. 30.
    Gowda SR, Brunet A, Wallraff GM, McCloskey BD (2013) J Phys Chem Lett 4:276–279CrossRefGoogle Scholar
  31. 31.
    Yu Y, Zhang B, He YB, Huang ZD, Oh SW, Kim JK (2013) J Mater Chem A 1:1163–1170CrossRefGoogle Scholar
  32. 32.
    Shui JL, Okasinski JS, Zhao D, Almer JD, Liu DJ (2012) ChemSusChem 5:2421–2426CrossRefGoogle Scholar
  33. 33.
    Assary RS, Lu J, Du P, Luo X, Zhang X, Ren Y, Curtiss LA, Amine K (2013) ChemSusChem 6:51–55CrossRefGoogle Scholar
  34. 34.
    Younesi R, Hahlin M, Roberts M, Edström K (2013) J Power Sources 225:40–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ding Zhu
    • 1
  • Lei Zhang
    • 1
  • Ming Song
    • 1
  • Xiaofei Wang
    • 1
  • Jun Mei
    • 2
  • Leo W. M. Lau
    • 2
  • Yungui Chen
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China
  2. 2.Chengdu Green Energy and Green Manufacturing Technology R& D Center, Chengdu Development Center of Science and TechnologyChina Academy of Engineering PhysicsChengduPeople’s Republic of China

Personalised recommendations