Journal of Solid State Electrochemistry

, Volume 17, Issue 12, pp 2979–2987 | Cite as

Nanoscale intermittent contact-scanning electrochemical microscopy

  • Robert A. Lazenby
  • Kim McKelvey
  • Massimo Peruffo
  • Marc Baghdadi
  • Patrick R. Unwin
Original Paper

Abstract

A major theme in scanning electrochemical microscopy (SECM) is a methodology for nanoscale imaging with distance control and positional feedback of the tip. We report the expansion of intermittent contact (IC)-SECM to the nanoscale, using disk-type Pt nanoelectrodes prepared using the laser-puller sealing method. The Pt was exposed using a focused ion beam milling procedure to cut the end of the electrode to a well-defined glass sheath radius, which could also be used to reshape the tips to reduce the size of the glass sheath. This produced nanoelectrodes that were slightly recessed, which was optimal for IC-SECM on the nanoscale, as it served to protect the active part of the tip. A combination of finite element method simulations, steady-state voltammetry and scanning electron microscopy for the measurement of critical dimensions, was used to estimate Pt recession depth. With this knowledge, the tip-substrate alignment could be further estimated by tip approach curve measurements. IC-SECM has been implemented by using a piezo-bender actuator for the detection of damping of the oscillation amplitude of the tip, when IC occurs, which was used as a tip-position feedback mechanism. The piezo-bender actuator improves significantly on the performance of our previous setup for IC-SECM, as the force acting on the sample due to the tip is greatly reduced, allowing studies with more delicate tips. The capability of IC-SECM is illustrated with studies of a model electrode (metal/glass) substrate.

Keywords

SECM Nanoelectrode Nanoscale electrochemical imaging Focused ion beam (FIB) milling 

Notes

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) project studentship for R.L. (Grant EP/H023909/1) and MOAC/DTC studentships for K.M. and M.B. We acknowledge support from a European Research Council Advanced Investigator Grant (ERC-2009-AdG247143 QUANTIF) for P.R.U and K.M. Some of the equipment used in this research was obtained through Birmingham Science City with support from Advantage West Midlands and the European Regional Development Fund. We thank Robert B. Channon and Andrew J. Soulby for their early contributions to the work. We are grateful to Dr. Alex W. Colburn for designing and building the electronic instrumentation used herein.

References

  1. 1.
    Bard AJ, Fan FRF, Kwak J, Lev O (1989) Anal Chem 61:132–138CrossRefGoogle Scholar
  2. 2.
    Amemiya S, Bard AJ, Fan F-RF, Mirkin MV, Unwin PR (2008) Annu Rev Anal Chem 1:95–131CrossRefGoogle Scholar
  3. 3.
    Schulte A, Nebel M, Schuhmann W (2010) Annu Rev Anal Chem 3:299–318CrossRefGoogle Scholar
  4. 4.
    Kim J, Shen M, Nioradze N, Amemiya S (2012) Anal Chem 84:3489–3492CrossRefGoogle Scholar
  5. 5.
    Ludwig M, Kranz C, Schuhmann W, Gaub HE (1995) Rev Sci Instrum 66:2857–2860CrossRefGoogle Scholar
  6. 6.
    Cougnon C, Bauer-Espindola K, Fabre DS, Mauzeroll J (2009) Anal Chem 81:3654–3659CrossRefGoogle Scholar
  7. 7.
    Ballesteros Katemann B, Schulte A, Schuhmann W (2004) Electroanalysis 16:60–65CrossRefGoogle Scholar
  8. 8.
    Etienne M, Anderson EC, Evans SR, Schuhmann W, Fritsch I (2006) Anal Chem 78:7317–7324CrossRefGoogle Scholar
  9. 9.
    Lee Y, Ding Z, Bard AJ (2002) Anal Chem 74:3634–3643CrossRefGoogle Scholar
  10. 10.
    Buchler M, Kelley SC, Smyrl WH (2000) Electrochem Solid-State Lett 3:35–38CrossRefGoogle Scholar
  11. 11.
    Wipf DO, Bard AJ (1992) Anal Chem 64:1362–1367CrossRefGoogle Scholar
  12. 12.
    Edwards MA, Whitworth AL, Unwin PR (2011) Anal Chem 83:1977–1984CrossRefGoogle Scholar
  13. 13.
    Wipf DO, Bard AJ, Tallman DE (1993) Anal Chem 65:1373–1377CrossRefGoogle Scholar
  14. 14.
    Kurulugama RT, Wipf DO, Takacs SA, Pongmayteegul S, Garris PA, Baur JE (2005) Anal Chem 77:1111–1117CrossRefGoogle Scholar
  15. 15.
    Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J, Unwin PR, Shiku H, Gorelik J, Klenerman D, Korchev YE, Matsue T (2012) Proc Natl Acad Sci U S A 109:11540–11545CrossRefGoogle Scholar
  16. 16.
    Macpherson JV, Unwin PR (2000) Anal Chem 72:276–285CrossRefGoogle Scholar
  17. 17.
    Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E (2001) Anal Chem 73:2491–2500CrossRefGoogle Scholar
  18. 18.
    Salomo M, Pust SE, Wittstock G, Oesterschulze E (2010) Microelectron Eng 87:1537–1539CrossRefGoogle Scholar
  19. 19.
    Kueng A, Kranz C, Mizaikoff B, Lugstein A, Bertagnolli E (2003) Appl Phys Lett 82:1592–1594CrossRefGoogle Scholar
  20. 20.
    Dobson PS, Weaver JMR, Holder MN, Unwin PR, Macpherson JV (2005) Anal Chem 77:424–434CrossRefGoogle Scholar
  21. 21.
    Burt DP, Wilson NR, Weaver JMR, Dobson PS, Macpherson JV (2005) Nano Lett 5:639–643CrossRefGoogle Scholar
  22. 22.
    Fan F-RF, Bard AJ (1999) Proc Natl Acad Sci U S A 96:14222–14227CrossRefGoogle Scholar
  23. 23.
    Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) Science 243:641–643CrossRefGoogle Scholar
  24. 24.
    Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H, Korchev YE, Matsue T (2010) J Am Chem Soc 132:10118–10126CrossRefGoogle Scholar
  25. 25.
    Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE (2011) Angew Chem Int Ed 50:9638–9642CrossRefGoogle Scholar
  26. 26.
    Comstock DJ, Elam JW, Pellin MJ, Hersam MC (2010) Anal Chem 82:1270–1276CrossRefGoogle Scholar
  27. 27.
    McKelvey K, Edwards MA, Unwin PR (2010) Anal Chem 82:6334–6337CrossRefGoogle Scholar
  28. 28.
    Patten HV, Meadows KE, Hutton LA, Iacobini JG, Battistel D, McKelvey K, Colburn AW, Newton ME, Macpherson JV, Unwin PR (2012) Angew Chem Int Ed 51:7002–7006CrossRefGoogle Scholar
  29. 29.
    McGeouch C-A, Peruffo M, Edwards MA, Bindley LA, Lazenby RA, Mbogoro MM, McKelvey K, Unwin PR (2012) J Phys Chem C 116:14892–14899CrossRefGoogle Scholar
  30. 30.
    McKelvey K, Snowden ME, Peruffo M, Unwin PR (2011) Anal Chem 83:6447–6454CrossRefGoogle Scholar
  31. 31.
    Mezour MA, Morin M, Mauzeroll J (2011) Anal Chem 83:2378–2382CrossRefGoogle Scholar
  32. 32.
    Ballesteros Katemann B, Schuhmann W (2002) Electroanalysis 14:22–28CrossRefGoogle Scholar
  33. 33.
    Zuliani C, Walsh DA, Keyes TE, Forster RJ (2010) Anal Chem 82:7135–7140CrossRefGoogle Scholar
  34. 34.
    Li Y, Bergman D, Zhang B (2009) Anal Chem 81:5496–5502CrossRefGoogle Scholar
  35. 35.
    Cox JT, Zhang B (2012) Annu Rev Anal Chem 5:253–272CrossRefGoogle Scholar
  36. 36.
    Laforge FO, Velmurugan J, Wang Y, Mirkin MV (2009) Anal Chem 81:3143–3150CrossRefGoogle Scholar
  37. 37.
    Sun P, Laforge FO, Abeyweera TP, Rotenberg SA, Carpino J, Mirkin MV (2008) Proc Natl Acad Sci U S A 105:443–448CrossRefGoogle Scholar
  38. 38.
    Shao Y, Mirkin MV, Fish G, Kokotov S, Palanker D, Lewis A (1997) Anal Chem 69:1627–1634CrossRefGoogle Scholar
  39. 39.
    Bertoncello P, Ciani I, Li F, Unwin PR (2006) Langmuir 22:10380–10388CrossRefGoogle Scholar
  40. 40.
    Cornut R, Bhasin A, Lhenry S, Etienne M, Lefrou C (2011) Anal Chem 83:9669–9675CrossRefGoogle Scholar
  41. 41.
    Lefrou C, Cornut R (2010) ChemPhysChem 11:547–556CrossRefGoogle Scholar
  42. 42.
    Nogala W, Velmurugan J, Mirkin MV (2012) Anal Chem 84:5192–5197CrossRefGoogle Scholar
  43. 43.
    Chang J, Leonard KC, Cho SK, Bard AJ (2012) Anal Chem 84:5159–5163CrossRefGoogle Scholar
  44. 44.
    Sun P, Mirkin MV (2007) Anal Chem 79:5809–5816CrossRefGoogle Scholar
  45. 45.
    Bond AM, Luscombe D, Oldham KB, Zoski CG (1988) J Electroanal Chem Interfacial Electrochem 249:1–14CrossRefGoogle Scholar
  46. 46.
    Bartlett PN, Taylor SL (1998) J Electroanal Chem 453:49–60CrossRefGoogle Scholar
  47. 47.
    Tefashe UM, Wittstock G (2013) C R Chim 16:7–14CrossRefGoogle Scholar
  48. 48.
    Arimoto S, Kageyama H, Torimoto T, Kuwabata S (2008) Electrochem Commun 10:1901–1904CrossRefGoogle Scholar
  49. 49.
    Nioradze N, Chen R, Kim J, Shen M, Santhosh P, Amemiya S (2013) Anal ChemGoogle Scholar
  50. 50.
    Cortés-Salazar F, Momotenko D, Lesch A, Wittstock G, Girault HH (2010) Anal Chem 82:10037–10044CrossRefGoogle Scholar
  51. 51.
    Lesch A, Momotenko D, Cortés-Salazar F, Wirth I, Tefashe UM, Meiners F, Vaske B, Girault HH, Wittstock G (2012) J Electroanal Chem 666:52–61CrossRefGoogle Scholar
  52. 52.
    Lazenby RA, McKelvey K, Unwin PR (2013) Anal Chem 85:2937–2944CrossRefGoogle Scholar
  53. 53.
    Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GWJ, Frolenkov GI, Klenerman D, Korchev YE (2009) Nat Methods 6:279–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert A. Lazenby
    • 1
  • Kim McKelvey
    • 1
    • 2
  • Massimo Peruffo
    • 1
  • Marc Baghdadi
    • 1
    • 2
  • Patrick R. Unwin
    • 1
  1. 1.Department of ChemistryUniversity of WarwickCoventryUK
  2. 2.Molecular Organization and Assembly in Cells (MOAC) Doctoral Training Centre (DTC)University of WarwickCoventryUK

Personalised recommendations