Journal of Solid State Electrochemistry

, Volume 17, Issue 10, pp 2697–2701 | Cite as

Electrochemical properties of all-solid-state lithium batteries with amorphous titanium sulfide electrodes prepared by mechanical milling

  • Takuya Matsuyama
  • Atsushi Sakuda
  • Akitoshi Hayashi
  • Yoshihiko Togawa
  • Shigeo Mori
  • Masahiro Tatsumisago
Original Paper


Amorphous titanium trisulfide (TiS3) active materials were prepared by ball milling of an equimolar mixture of crystalline titanium disulfide (TiS2) and sulfur. A high-resolution transmission electron microscope image revealed no periodic lattice fringes on the amorphous TiS3. The all-solid-state lithium secondary batteries using a sulfide solid electrolyte and the amorphous TiS3 electrode showed high capacity of greater than 300 mAh g−1 for 10 cycles. The amorphous TiS3 had a higher capacity than the mixture of crystalline TiS2 and S, which was used as the starting material of amorphous TiS3. The X-ray diffraction patterns and the Raman spectra of the amorphous TiS3 electrode after the first and tenth charge–discharge measurements were similar to those before the measurement. The amorphous structure of TiS3 did not change greatly during the first few cycles. The all-solid-state cells with the amorphous TiS3 electrode showed higher initial coulombic efficiency because the amorphous TiS3 active material retained its structure during the initial electrochemical test.


Titanium sulfide All-solid-state battery Lithium battery Mechanical milling Amorphous 



This research was financially supported by the Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) project.


  1. 1.
    Ohzuku T, Ueda A (1994) J Electrochem Soc 141:2972–2977CrossRefGoogle Scholar
  2. 2.
    Endo M, Kim C, Nishimura K, Fujino T (2000) Miyashita K 38:183–197Google Scholar
  3. 3.
    Zheng H, Li B, Fu Y, Abe T (2006) Ogumi Z 52:1556–1562Google Scholar
  4. 4.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682–686CrossRefGoogle Scholar
  5. 5.
    Minami K, Hayashi A, Tatsumisago M (2011) J Am Ceram Soc 94:1779–1783CrossRefGoogle Scholar
  6. 6.
    Komiya R, Hayashi A, Morimoto H, Tatsumisago M, Minami T (2001) Solid State Ionics 140:83–87CrossRefGoogle Scholar
  7. 7.
    Mizuno F, Hama S, Hayashi A, Tadanaga K, Minami T, Tatsumisago M (2002) Chem Lett 12:1244–1245CrossRefGoogle Scholar
  8. 8.
    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Power Sources 146:711–714CrossRefGoogle Scholar
  9. 9.
    Tatsumisago M, Hayashi A (2008) Funct Matter Lett 1:31–36CrossRefGoogle Scholar
  10. 10.
    Holleck GL, Driscoll JR (1977) Electrochemica Acta 22:647–655CrossRefGoogle Scholar
  11. 11.
    Whittingham MS, Panella JA (1981) Mat Res Bull 16:37–45CrossRefGoogle Scholar
  12. 12.
    Iwamoto K, Aotani N, Takada K, Kondo S (1994) Solid State Ionics 70–71:658–661CrossRefGoogle Scholar
  13. 13.
    Trevey JE, Stoldt CR, Lee SH (2011) J Electrochem Soc 158:A1282–A1289CrossRefGoogle Scholar
  14. 14.
    Onuki Y, Inada R, Tanuma S, Yamanaka S, Kamimura H (1983) Solid State Ionics 11:195–201CrossRefGoogle Scholar
  15. 15.
    Lindic MH, Martinez H, Benayad A, Pecquenard B, Vinatier P, Levasseur A, Gonbeau D (2005) Solid State Ionics 176:1529–1537CrossRefGoogle Scholar
  16. 16.
    Machida N, Fuchida R, Minami T (1989) J Electrochem Soc 136:2133–2136CrossRefGoogle Scholar
  17. 17.
    Ku JH, Ryu JH, Kim SH, Han OH, Oh SM (2012) Adv Funct Mater 22:3658–3664CrossRefGoogle Scholar
  18. 18.
    Hayashi A, Matsuyama T, Sakuda A, Tatsumisago M (2012) Chem Lett 41:886–888CrossRefGoogle Scholar
  19. 19.
    Hayashi A, Hama S, Minami T, Tatsumisago M (2003) Electrochem Commun 5:111–114CrossRefGoogle Scholar
  20. 20.
    Takada K, Aotani N, Iwamoto K, Kondo K (1996) Solid State Ionics 86–88:877–882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takuya Matsuyama
    • 1
  • Atsushi Sakuda
    • 1
  • Akitoshi Hayashi
    • 1
  • Yoshihiko Togawa
    • 2
  • Shigeo Mori
    • 3
  • Masahiro Tatsumisago
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan
  2. 2.Nanoscience and Nanotechnology Research CenterOsaka Prefecture UniversitySakaiJapan
  3. 3.Department of Materials Science, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan

Personalised recommendations