Journal of Solid State Electrochemistry

, Volume 17, Issue 12, pp 3015–3020

Model Ge microstructures as anodes for Li-ion batteries

  • Brandon R. Long
  • Jason L. Goldman
  • Ralph G. Nuzzo
  • Andrew A. Gewirth
Original Paper

Abstract

We examine the properties of microstructured Ge electrodes for Li-ion battery applications. Model-microfabricated single-crystalline Ge electrode structures are used to investigate the effects of Cu coating and partial discharging on cycle life. Results show that the Ge microstructures insert Li more isotropically than do comparable ones comprised of Si. A model Ge microbar electrode with a Cu coating is capable of 95 % coulombic efficiency after 40 cycles when the amount of charge is limited. The microstructured Ge electrode is found to exhibit poor performance at higher delithiation rates (above C/5) relative to microstructured Si electrodes. These results provide an understanding of the effects of electrochemical processes on model-microstructured Ge electrodes which may ultimately aid in the development of advanced anodes for Li-ion batteries.

Keywords

Li-ion batteries Germanium anode Microstructured electrode High rate 

References

  1. 1.
    Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  2. 2.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRefGoogle Scholar
  3. 3.
    Thackeray MM, Vaughey JT, Fransson LML (2002) Recent developments in anode materials for lithium batteries. JOM 54(3):20–23CrossRefGoogle Scholar
  4. 4.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763CrossRefGoogle Scholar
  5. 5.
    Larcher D, Beattie S, Morcrette M, Edstroem K, Jumas J-C, Tarascon J-M (2007) Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17(36):3759–3772CrossRefGoogle Scholar
  6. 6.
    Zhang WJ (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24CrossRefGoogle Scholar
  7. 7.
    Cheng J, Du J (2012) Facile synthesis of germanium-graphene nanocomposites and their application as anode materials for lithium ion batteries. Cryst Eng Comm 14(2):397–400CrossRefGoogle Scholar
  8. 8.
    Chockla AM, Panthani MG, Holmberg VC, Hessel CM, Reid DK, Bogart TD, Harris JT, Mullins CB, Korgel BA (2012) Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries. J Phys Chem C 116(22):11917–11923CrossRefGoogle Scholar
  9. 9.
    DiLeo RA, Frisco S, Ganter MJ, Rogers RE, Raffaelle RP, Landi BJ (2011) Hybrid germanium nanoparticle-single-wall carbon nanotube free-standing anodes for lithium ion batteries. J Phys Chem C 115(45):22609–22614CrossRefGoogle Scholar
  10. 10.
    Seo M-H, Park M, Lee KT, Kim K, Kim J, Cho J (2011) High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ Sci 4(2):425–428CrossRefGoogle Scholar
  11. 11.
    Xue D-J, Xin S, Yan Y, Jiang K-C, Yin Y-X, Guo Y-G, Wan L-J (2012) Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J Am Chem Soc 134(5):2512–2515CrossRefGoogle Scholar
  12. 12.
    Hwang C-M, Park J-W (2010) Electrochemical characterization of a Ge-based composite film fabricated as an anode material using magnetron sputtering for lithium ion batteries. Thin Solid Films 518(22):6590–6597CrossRefGoogle Scholar
  13. 13.
    Rudawski NG, Darby BL, Yates BR, Jones KS, Elliman RG, Volinsky AA (2012) Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes. Appl Phys Lett 100(8):083111–083114CrossRefGoogle Scholar
  14. 14.
    Graetz J, Ahn CC, Yazami R, Fultz B (2004) Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J Electrochem Soc 151(5):A698–A702CrossRefGoogle Scholar
  15. 15.
    Chan CK, Zhang XF, Cui Y (2008) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8(1):307–309CrossRefGoogle Scholar
  16. 16.
    DiLeo RA, Ganter MJ, Raffaelle RP, Landi BJ (2010) Germanium-single-wall carbon nanotube anodes for lithium ion batteries. J Mater Res 25(8):1441–1446CrossRefGoogle Scholar
  17. 17.
    Ling S, Cui Z, She G, Guo X, Mu L, Shi W (2012) A novel type of Ge nanotube arrays for lithium storage material. J Nanosci Nanotechnol 12(1):213–217CrossRefGoogle Scholar
  18. 18.
    Wang D, Yang Z, Li F, Liu D, Wang X, Yan H, He D (2011) Improved performance for lithium-ion batteries with nickel nanocone-arrays supported germanium anode. Mater Lett 65(11):1542–1544CrossRefGoogle Scholar
  19. 19.
    Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7(5):A93–A96CrossRefGoogle Scholar
  20. 20.
    Baggetto L, Notten PHL (2009) Lithium-ion (De)insertion reaction of germanium thin-film electrodes: an electrochemical and in situ XRD study. J Electrochem Soc 156(3):A169–A175CrossRefGoogle Scholar
  21. 21.
    Goldman JL, Long BR, Gewirth AA, Nuzzo RG (2011) Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: models for high energy density lithium-ion battery anodes. Adv Funct Mater 21(13):2412–2422CrossRefGoogle Scholar
  22. 22.
    Chan MKY, Long BR, Gewirth AA, Greeley JP (2011) The first-cycle electrochemical lithiation of crystalline Ge: dopant and orientation dependence and comparison with Si. J Phys Chem Lett 2(24):3092–3095CrossRefGoogle Scholar
  23. 23.
    Protic D, Krings T (2003) Microstructures on Ge detectors with amorphous Ge contacts. IEEE Trans Nucl Sci 50(4):998–1000CrossRefGoogle Scholar
  24. 24.
    Kim MG, Cho J (2009) Nanocomposite of amorphous Ge and Sn nanoparticles as an anode material for Li secondary battery. J Electrochem Soc 156(4):A277–A282CrossRefGoogle Scholar
  25. 25.
    Cui G, Gu L, Kaskhedikar N, van Aken PA, Maier J (2010) A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim Acta 55(3):985–988CrossRefGoogle Scholar
  26. 26.
    Gao B, Sinha S, Fleming L, Zhou O (2001) Alloy formation in nanostructured silicon. Adv Mater 13(11):816–819CrossRefGoogle Scholar
  27. 27.
    Nesper R (1990) Structure and chemical bonding in Zintl-phases containing lithium. Prog Solid State Chem 20(1):1–45CrossRefGoogle Scholar
  28. 28.
    Yang J, Takeda Y, Imanishi N, Yamamoto O (1999) Ultrafine Sn and SnSb0.14 powders for lithium storage matrices in lithium-ion batteries. J Electrochem Soc 146(11):4009–4013CrossRefGoogle Scholar
  29. 29.
    Vaughey JT, Fransson L, Swinger HA, Edstrom K, Thackeray MM (2003) Alternative anode materials for lithium-ion batteries: a study of Ag3Sb. J Power Sources 119–121:64–68CrossRefGoogle Scholar
  30. 30.
    Hewitt KC, Beaulieu LY, Dahn JR (2001) Electrochemistry of InSb as a Li insertion host. Problems and prospects. J Electrochem Soc 148(5):A402–A410CrossRefGoogle Scholar
  31. 31.
    Chan MKY, Wolverton C, Greeley JP (2012) First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. J Am Chem Soc 134(35):14362–14374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brandon R. Long
    • 1
  • Jason L. Goldman
    • 1
  • Ralph G. Nuzzo
    • 1
  • Andrew A. Gewirth
    • 1
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations