Journal of Solid State Electrochemistry

, Volume 17, Issue 9, pp 2417–2427 | Cite as

A novel synthesis of (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole), alternating polymer formation, characterization, and capacitance measurements

  • Murat Ates
  • Nesimi Uludag
  • Tolga Karazehir
  • Fatih Arican
Original Paper

Abstract

In this work, (3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole) (EDOTVBCz) comonomer was chemically synthesized and characterized by Fourier transform infrared (FTIR), proton nuclear magnetic resonance, and carbon nuclear magnetic resonance spectroscopy. EDOTVBCz was electrocoated on glassy carbon electrode (GCE) in various initial molar concentrations ([EDOTVBCz]0 = 1.0, 1.5, 2.0, and 3.0) in 0.1 M lithium perchlorate (LiClO4)/acetonitrile (CH3CN). P(EDOTVBCz)/GCE was characterized by cyclic voltammetry, FTIR reflectance-attenuated total reflection spectroscopy, scanning electron microscopy–energy dispersive X-ray analysis, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). EIS was used to determine the capacitive behaviors of modified GCE via Nyquist, Bode magnitude, Bode phase, and admittance plots. The highest low-frequency capacitance value was obtained as CLF = ∼2.35 mF cm−2 for [EDOTVBCz]0 = 3.0 mM. Double-layer capacitance of the polymer/electrolyte system was calculated as Cdl = ∼2.78 mF cm−2 for [EDOTVBCz]0 = 1.0 and 3.0 mM. The maximum phase angle was obtained as θ = ∼76.7o for [EDOTVBCz]0 = 1.0, 1.5, 2.0, and 3.0 mM at the frequency of 20.6 Hz. AC impedance spectra of P(EDOTVBCz)/LiClO4/CH3CN was obtained by performing electrical equivalent circuit model of R(Q(R(CR))) with linear Kramers–Kronig test.

Figure

SEM-EDX analysis of P(EDOTVBCz)/CFME EDX point analysis inset: SEM point analysis, [EDOTVBCz]0 = 3 mM. Chronoamperometric method of constant potential at 1.6 V, 300 s in 0.1 M LiClO4/CH3CN

Keywords

3,6-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(4-vinylbenzyl)-9H-carbazole) Electrochemical impedance spectroscopy Synthesis Equivalent circuit model Double-layer capacitance 

References

  1. 1.
    Christopher LH, Dennis ET, Seth CR (2010) J Phys Chem B 114:5275–5282CrossRefGoogle Scholar
  2. 2.
    Beaujuge PM, Amb Chad M, Reynolds JR (2010) Acc Chem Res 43:1396–1407CrossRefGoogle Scholar
  3. 3.
    Roncali J (1992) Chem Rev 92:711–738CrossRefGoogle Scholar
  4. 4.
    McCullough RD (1998) Adv Mater 10:93–116CrossRefGoogle Scholar
  5. 5.
    Koyuncu FB, Koyuncu S, Ozdemir E (2011) Org Electron 12:1701–1710CrossRefGoogle Scholar
  6. 6.
    Zhang K, Tieke B, Forgie JC, Skabara PJ (2009) Macromol. Rapid Comm 30:1834–1840CrossRefGoogle Scholar
  7. 7.
    Roncali J (1999) J Mater Chem 9:1875–1893CrossRefGoogle Scholar
  8. 8.
    Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) J Phys Chem B 106:10585–10593CrossRefGoogle Scholar
  9. 9.
    Beaujuge PM, Ellinger S, Reynolds JR (2008) Nat Mater 7:795–799CrossRefGoogle Scholar
  10. 10.
    Chang CH, Wang KL, Jiang JC, Liawa DJ, Lee KR, Lai JY, Lai KH (2010) Polymer 51:4493–4502CrossRefGoogle Scholar
  11. 11.
    Goto H, Kawabata K (2011) Polym Chem 2:1098–1106CrossRefGoogle Scholar
  12. 12.
    Goto H (2012) J Polym Sci Polym Chem 50:622–628CrossRefGoogle Scholar
  13. 13.
    Tam PD, Van Hieu N (2011) Appl Surf Sci 257:9817–9824CrossRefGoogle Scholar
  14. 14.
    Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) J Power Sources 196:4102–4108CrossRefGoogle Scholar
  15. 15.
    Zou J, Yip HL, Hau SK, Jen AKY (2010) Appl Phys Lett 96:203301CrossRefGoogle Scholar
  16. 16.
    Ma C, Xu Y, Zhang C, Xu Y, Xiang W, Ouyang M (2009) J Electroanal Chem 634:31–34CrossRefGoogle Scholar
  17. 17.
    Bushueva AY, Shklyaeva EV, Abashev GG (2009) Mendeleev Commun 19:329–331CrossRefGoogle Scholar
  18. 18.
    Borrelli DC, Barr MC, Bulović V, Gleason KK (2012) Sol Energ Mat Sol C 99:190–196CrossRefGoogle Scholar
  19. 19.
    Fu C, Zhou H, Liu R, Huang Z, Chen J, Kuang Y (2012) Mater Chem Phys 132:596–600CrossRefGoogle Scholar
  20. 20.
    Anglin TC, Speros JC, Massari AM (2011) J Phys Chem C 115:16027–16036CrossRefGoogle Scholar
  21. 21.
    Roncali J (1997) Chem Rev 97:173–205CrossRefGoogle Scholar
  22. 22.
    Granstrom M (1997) Polym Advan Technol 8:424–430CrossRefGoogle Scholar
  23. 23.
    Higgins TB, Mirkin CA (1998) Chem Mater 10:1589–1595CrossRefGoogle Scholar
  24. 24.
    Jadamiec M, Lapkowski M, Matlengiewicz M, Brembilla A, Henry B, Rodehüser L (2007) Electrochim Acta 52:6146–6154CrossRefGoogle Scholar
  25. 25.
    Chan HSO, Ng SC (1998) Prog Polym Sci 23:1167–1231CrossRefGoogle Scholar
  26. 26.
    Barbarella G, Mellucci M, Sotgiu G (2005) Adv Mater 17:1581–1593CrossRefGoogle Scholar
  27. 27.
    Jen KY, Miller GG, Elsenbaumer RL (1986) J Chem Soc Chem Commun 17:1346–1347CrossRefGoogle Scholar
  28. 28.
    Armelin E, Bertran O, Estrany F, Salvatella R, Alemán C (2009) Eur Polym J 45:2211–2221CrossRefGoogle Scholar
  29. 29.
    Scully JR, Silverman DC, Kendig MW (1993) Electrochemical Impedance: Analysis and Interpretation. ASTM, PhiladelphiaCrossRefGoogle Scholar
  30. 30.
    Darowicki K (2004) Kawula. J Electrochim Acta 49:4829–4839CrossRefGoogle Scholar
  31. 31.
    Baldissera AF, Freitas DB, Ferreira CA (2010) Mater Corros 61:790–801CrossRefGoogle Scholar
  32. 32.
    Wang X, Bernard MC, Deslouis C, Joiret S, Rousseau P (2010) Electrochim Acta 55:6299–6307CrossRefGoogle Scholar
  33. 33.
    Jannakoudakis PD (1994) Synth Met 68:17–31CrossRefGoogle Scholar
  34. 34.
    Ferloni P, Mastragostino M, Meneghello L (1996) Electrochim Acta 41:27–33CrossRefGoogle Scholar
  35. 35.
    Simoes FR, Pocrifka LA, Marchesi LFQP, Pereira EC (2011) J Phys Chem B 115:11092–11097CrossRefGoogle Scholar
  36. 36.
    Agrisuelas J, Gabrielli C, Garcia-Jareño JJ, Gimenez-Romero D, Perrot H, Vicente F (2007) J Phys Chem C 111:14230–14237CrossRefGoogle Scholar
  37. 37.
    Amemiya T, Hashimoto K, Fujishima A (1993) J Phys Chem 97:4187–4191CrossRefGoogle Scholar
  38. 38.
    Agrisuelas J, Garcia-Jaréno JJ, Gimenez-Romero D, Vicente F (2010) Electrochim Acta 55:6128–6135CrossRefGoogle Scholar
  39. 39.
    Ates M, Uludag N (2010) Fiber Polym 11:331–337CrossRefGoogle Scholar
  40. 40.
    Papez V, Inganas O, Cimrova V, Nespurek S (1991) J Electroanal Chem 282:123–139CrossRefGoogle Scholar
  41. 41.
    Ates M, Uludag N, Sarac AS (2011) Mater Chem Phys 127:120–127CrossRefGoogle Scholar
  42. 42.
    Sarac AS, Bismarck A, Kumru ME, Springer J (2011) Synth Met 123:411–423CrossRefGoogle Scholar
  43. 43.
    Sarac AS, Sezgin S, Ates M, Turhan CM (2009) Adv Polym Technol 28:120–130CrossRefGoogle Scholar
  44. 44.
    Ates M, Sarac AS (2009) J Appl Electrochem 39:2043–2048CrossRefGoogle Scholar
  45. 45.
    Sarac AS, Gencturk A, Schulz B, Gilsing HD, Serantoni M (2007) J Nanosci Nanotechnol 7:3543–3552CrossRefGoogle Scholar
  46. 46.
    Ates M, Uludag N, Sarac AS (2011) Fiber Polym 12:8–14CrossRefGoogle Scholar
  47. 47.
    Ates M, Uludag N (2011) Fiber Polym 12:296–302CrossRefGoogle Scholar
  48. 48.
    Ates M (2009) Int J Electrochem Sci 4:980–992Google Scholar
  49. 49.
    Hu JM, Zhang JQ, Cao CN, Hsing IM (2004) Electrochim Acta 49:5227–5234CrossRefGoogle Scholar
  50. 50.
    Ates M, Uludag N, Karazehir T (2012) J Solid State Electrochem 16:2639–2649CrossRefGoogle Scholar
  51. 51.
    Brug GJ (1984) Van den eden ALG, Sluyters-Rehbach M, Sluyters JH. J Electroanal Chem 176:275–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Murat Ates
    • 1
  • Nesimi Uludag
    • 1
  • Tolga Karazehir
    • 1
    • 2
  • Fatih Arican
    • 1
  1. 1.Department of Chemistry, Faculty of Arts and SciencesNamik Kemal UniversityTekirdagTurkey
  2. 2.Department of Chemistry, Faculty of Arts and SciencesIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations