Journal of Solid State Electrochemistry

, Volume 17, Issue 9, pp 2539–2544 | Cite as

Intermittent operation of the aprotic Li-O2 battery: the mass recovery process upon discharge interval

  • Ding Zhu
  • Lei Zhang
  • Ming Song
  • Xiaofei Wang
  • Rui Mi
  • Hao Liu
  • Jun Mei
  • Leo W. M. Lau
  • Yungui Chen
Original Paper


The intermittent operation of the aprotic Li-O2 battery is systematically studied in this paper. A combined study of the battery charge retention and the electrolyte stability to O2 suggests a low self-discharge rate of the Li-O2 battery, which is a prerequisite to achieve desirable intermittent discharge performance. The battery under intermittent operation exhibits significantly improved discharge performance as compared to the continuously discharged one. It is found that the capacity output is directly associated with the time interval between two discharge steps and with the capacity limit for each discharge step. The open-circuit potential and linear scan voltammetry analyses confirm that a “mass recovery” process, corresponding to the concentration relaxation of the oxygen which is available at the cathode, proceed during the discharge intervals. In the “mass recovery” process, an increased amount of O2 homogeneously redistributes at the electrolyte/carbon interface at both sides of the electrode, which relieves the O2 transport limit, enhances the availability of O2 and the utilization of carbon material for the cathode, and thus significantly improves the discharge performance of the aprotic Li-O2 battery.


Aprotic Li-O2 battery Transport limitation Intermittent operation Discharge interval Mass recovery process 



This study was funded by the Synergistic Innovative Joint Foundation of AEP-SCU (no. 0082604132222).


  1. 1.
    Abraham KM, Jiang Z (1996) J Electrochem Soc 143:1–5CrossRefGoogle Scholar
  2. 2.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novak P, Bruce PG (2011) J Am Chem Soc 133:8040–8047CrossRefGoogle Scholar
  3. 3.
    Freunberger SA, Chen YH, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) Angew Chem Int Ed 50:8609–8613CrossRefGoogle Scholar
  4. 4.
    Bryantsev VS, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase GV (2011) J Phys Chem A 115:12399–12409CrossRefGoogle Scholar
  5. 5.
    Bryantsev VS, Faglioni F (2012) J Phys Chem A 116:7128–7138CrossRefGoogle Scholar
  6. 6.
    McCloskey BD, Bethune DS, Shelby RM, Girishkumar G, Luntz AC (2011) J Phys Chem Lett 2:1161–1166CrossRefGoogle Scholar
  7. 7.
    McCloskey BD, Bethune DS, Shelby RM, Mori T, Scheffler R, Speidel A, Sherwood M, Luntz AC (2012) J Phys Chem Lett 3:3043–3047CrossRefGoogle Scholar
  8. 8.
    Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang JG (2011) J Power Sources 196:9631–9639CrossRefGoogle Scholar
  9. 9.
    Xu W, Hu J, Engelhard MH, Towne SA, Hardy JS, Xiao J, Feng J, Hu MY, Zhang J, Ding F, Gross ME, Zhang JG (2012) J Power Sources 215:240–247CrossRefGoogle Scholar
  10. 10.
    Ryan KR, Trahey L, Ingram BJ, Burrell AK (2012) J Phys Chem C 116:19724–19728CrossRefGoogle Scholar
  11. 11.
    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) J Am Chem Soc 128:1390–1393CrossRefGoogle Scholar
  12. 12.
    Giordani V, Freunberger SA, Bruce PG, Tarascon JM, Larcher D (2010) Electrochem Solid-State Lett 13:A180–A183CrossRefGoogle Scholar
  13. 13.
    McCloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) J Phys Chem Lett 3:997–1001CrossRefGoogle Scholar
  14. 14.
    Xu W, Viswanathan VV, Wang DY, Towne SA, Xiao J, Nie ZM, Hu DH, Zhang JG (2011) J Power Sources 196:3894–3899CrossRefGoogle Scholar
  15. 15.
    Harding JR, Lu YC, Tsukada Y, Horn YS (2012) Phys Chem Chem Phys 14:10540–10546CrossRefGoogle Scholar
  16. 16.
    Song M, Zhu D, Zhang L, Wang XF, Huang LH, Shi QW, Mi R, Liu H, Mei J, Lau LWM, Chen YG (2013) J Solid State Electrochem doi: 10.1007/s10008-013-2067-6
  17. 17.
    Kowalczk I, Read J, Salomon M (2007) Pure Appl Chem 79:851–860CrossRefGoogle Scholar
  18. 18.
    Sandhu SS, Fellner JP, Brutchen GW (2007) J Power Sources 164:365–371CrossRefGoogle Scholar
  19. 19.
    Zhang SS, Foster D, Read J (2010) J Power Sources 195:1235–1240CrossRefGoogle Scholar
  20. 20.
    Albertus P, Girishkumar G, McCloskey BD, Carrera RSS, Kozinsky B, Christensen J, Luntz AC (2011) J Electrochem Soc 158:A343–A351CrossRefGoogle Scholar
  21. 21.
    Wang Y (2012) Electrochim Acta 75:239–246CrossRefGoogle Scholar
  22. 22.
    Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) J Electrochem Soc 150:A1351–A1356CrossRefGoogle Scholar
  23. 23.
    Read J (2006) J Electrochem Soc 153:A96–A100CrossRefGoogle Scholar
  24. 24.
    Xu W, Xiao J, Xu K, Wang D, Zhang J, Zhang JG (2010) Electrochem. Solid-State Lett 13:A48–A51CrossRefGoogle Scholar
  25. 25.
    Xu W, Xiao J, Xu K, Wang D, Zhang J, Zhang JG (2010) J Electrochem Soc 157:A219–A224CrossRefGoogle Scholar
  26. 26.
    Lu YC, Kwabi DG, Yao KPC, Harding JR, Zhou J, Zuin L, Horn YS (2011) Energy Environ Sci 4:2999–3007CrossRefGoogle Scholar
  27. 27.
    Zhang SS, Read J (2011) J Power Sources 196:2867–2870CrossRefGoogle Scholar
  28. 28.
    Wang Y, Zheng D, Yang XQ, Qu D (2011) Energy Environ Sci 4:3697–3702CrossRefGoogle Scholar
  29. 29.
    Choi NS, Jeong G, Koo B, Lee YW, Lee KT (2013) J Power Sources 225:95–100CrossRefGoogle Scholar
  30. 30.
    Yang XH, Xia YY (2010) J Solid State Electrochem 14:109–114CrossRefGoogle Scholar
  31. 31.
    Castillo S, Samala NK, Manwaring K, Izadi B, Radhakrishnan (2004) Proceedings of the International Conference on Embedded Systems and Applications 18–24Google Scholar
  32. 32.
    Adams J, Karulkar M, Anandan V (2013) J Power Sources 239:132–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ding Zhu
    • 1
  • Lei Zhang
    • 1
  • Ming Song
    • 1
  • Xiaofei Wang
    • 1
  • Rui Mi
    • 2
  • Hao Liu
    • 2
  • Jun Mei
    • 2
  • Leo W. M. Lau
    • 2
  • Yungui Chen
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduChina
  2. 2.Chengdu Green Energy and Green Manufacturing Technology R& D Center, Chengdu Development Center of Science and TechnologyChina Academy of Engineering PhysicsChengduChina

Personalised recommendations