Advertisement

Journal of Solid State Electrochemistry

, Volume 17, Issue 8, pp 2139–2149 | Cite as

Electrochemical and oxygen reduction properties of pristine and nitrogen-doped few layered graphene nanoflakes (FLGs)

  • Navneet SoinEmail author
  • Susanta Sinha Roy
  • Surbhi Sharma
  • Thomas Thundat
  • James A. McLaughlin
Original Paper

Abstract

Vertically aligned few layered graphene (FLGs) nanoflakes were synthesized by microwave plasma deposition for various time durations ranging from 30 to 600 s to yield graphene films of varying morphology, microstructure and areal/edge density. Their intrinsic electrochemical properties were explored using Fe(CN)6 3−/4− and Ru(NH3)6 3+/2+ redox species. All the FLG electrodes demonstrate fast electron transfer kinetics with near ideal ΔEp values of 60–65 mV. Using a relationship between electron transfer rate and edge plane density, an estimation of the edge plane density was carried out which revealed a moderation of edge plane density with increase in growth time. The pristine FLGs also possess excellent electrocatalytic activity towards oxygen reduction reaction (ORR) in alkaline solutions. This ORR activity can be further enhanced by exposing the pristine FLGs to nitrogen electron cyclotron resonance plasma. The metal free N-doped FLGs exhibit much higher electrocatalytic activity towards ORR than pristine FLGs with higher durability and selectivity than Pt-based catalysts. The excellent electrochemical performance of N-doped FLGs is explained in terms of enhanced edge plane exposure, high content of pyridinic nitrogen and an increase in the electronic density of states.

Keywords

Graphene Few layered graphene nanoflakes Nitrogen doping Electrochemical properties Oxygen reduction reaction 

Supplementary material

10008_2013_2073_MOESM1_ESM.docx (19.8 mb)
ESM 1 (DOCX 20226 kb)

References

  1. 1.
    McCreery RL (2008) Chem Rev 108:2646–2687CrossRefGoogle Scholar
  2. 2.
    Rice RJ, McCreery RL (1989) Anal Chem 61:1637–1641CrossRefGoogle Scholar
  3. 3.
    Dumitrescu I, Unwin PR, Macpherson JV (2009) Chem Commun 45:6886–6901CrossRefGoogle Scholar
  4. 4.
    Brownson DAC, Banks CE (2010) Analyst 135:2768–2778CrossRefGoogle Scholar
  5. 5.
    Davies TJ, Hyde ME, Compton RG (2005) Angew Chem 117:5251–5256CrossRefGoogle Scholar
  6. 6.
    Hallam PM, Banks CE (2011) Electrochem Commun 13:8–11CrossRefGoogle Scholar
  7. 7.
    Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Angew Chem 45:2533–2537CrossRefGoogle Scholar
  8. 8.
    Šljukic B, Banks CE, Richard G (2006) Nano Lett 6:1556–1558CrossRefGoogle Scholar
  9. 9.
    Soin N, Roy SS, O’Kane C, Lim TH, Hetherington CJD, McLaughlin JAD (2011) CrystEnggComm 13:312–318CrossRefGoogle Scholar
  10. 10.
    Soin N, Roy SS, Roy S, Hazra KS, Misra DS, Lim TH, Hetherington CJD, McLaughlin JAD (2011) J Phys Chem C115:5366–5372Google Scholar
  11. 11.
    Soin N, Roy SS, Lim TH, McLaughlin JAD (2011) Mater Chem Phys 129(3):1051–1057CrossRefGoogle Scholar
  12. 12.
    Soin N, Roy SS, Mitra SK, Thundat SK, McLaughlin JAD (2012) J Mater Chem 22:14944–14950CrossRefGoogle Scholar
  13. 13.
    Pumera M, Sasaki T, Iwai H (2008) Chem Asian J 3:2046–2055CrossRefGoogle Scholar
  14. 14.
    Yu D, Nagelli E, Du F, Dai L (2010) J Phys Chem Lett 1:2165–2173CrossRefGoogle Scholar
  15. 15.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760CrossRefGoogle Scholar
  16. 16.
    Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350–4358CrossRefGoogle Scholar
  17. 17.
    Qu L, Liu Y, Baek JB, Dai L (2010) ACS Nano 4:1321–1326CrossRefGoogle Scholar
  18. 18.
    Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) J Mater Chem 20:7491–7496CrossRefGoogle Scholar
  19. 19.
    Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal, B 79:89–99CrossRefGoogle Scholar
  20. 20.
    Liu R, Wu D, Feng X, Müllen K (2010) Angew Chem 122:2619–2623CrossRefGoogle Scholar
  21. 21.
    Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012) J Am Chem Soc 134:15–18CrossRefGoogle Scholar
  22. 22.
    Lee YH, Lee JH (2009) Appl Phys Lett 95:143102CrossRefGoogle Scholar
  23. 23.
    Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Adv Funct Mater 18:3506–3514CrossRefGoogle Scholar
  24. 24.
    Jones CP, Jurkschat K, Crossley A, Richard G, Riehl BL, Banks CE (2007) Langmuir 23:9501–9504CrossRefGoogle Scholar
  25. 25.
    Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Adv Funct Mater 19:2782–2789CrossRefGoogle Scholar
  26. 26.
    Lin YG, Hsu YK, Wu CT, Chen SY, Chen KH, Chen LC (2009) Diamond Relat Mater 18:433–437CrossRefGoogle Scholar
  27. 27.
    Zoski CG (2007) Handbook of electrochemistry. Elsevier, NetherlandsGoogle Scholar
  28. 28.
    Bard AJ, Faulkner LR (2001) Electrochemical Methods-Fundamentals and applications. John Wiley & SonsGoogle Scholar
  29. 29.
    Hrapovic S, Liu YL, Male KB, Luong JHT (2004) Anal Chem 76:1083–1088CrossRefGoogle Scholar
  30. 30.
    Salinas-Torres D, Huerta F, Montilla F, Morallón E (2011) Electrochim Acta 56:2464–2470CrossRefGoogle Scholar
  31. 31.
    Pacios M, Valle M, Bartroli J, Esplandiu MJ (2008) J Electroanal Chem 619:117–124Google Scholar
  32. 32.
    Nicholson RS (1965) Anal Chem 37:1351–1355CrossRefGoogle Scholar
  33. 33.
    Luais E, Boujtita M, Gohier A, Tailleur A, Casimirius S, Djouadi MA, Granier A, Tessier PY (2010) Appl Phys Lett 96:126103CrossRefGoogle Scholar
  34. 34.
    Davies TJ, Banks CE, Compton RG (2005) J Solid State Electrochem 9:797–808CrossRefGoogle Scholar
  35. 35.
    Kobayashi K (1993) Phys Rev B 48:1757CrossRefGoogle Scholar
  36. 36.
    Ji X, Banks CE, Crossley A, Compton RG (2006) ChemPhysChem 7:1337–1344CrossRefGoogle Scholar
  37. 37.
    Yang SY, Chang KH, Huang YL, Lee YF, Tien HW, Li SM, Lee YH, Liu CH, Ma CM, Hu CC (2012) Electrochem Commun 14:39–42CrossRefGoogle Scholar
  38. 38.
    Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W (2009) J Phys Chem C 113:14302–14310CrossRefGoogle Scholar
  39. 39.
    Yeager E (1986) J Mol Catal 38:5–25CrossRefGoogle Scholar
  40. 40.
    Paliteiro C, Hamnett A, Goodenough JB (1987) J Electroanal Chem 233:147–159CrossRefGoogle Scholar
  41. 41.
    Abbas G, Papakonstantinou P, Iyer GRS, Kirkman IW, Chen CL (2007) Phys Rev B 75:195429CrossRefGoogle Scholar
  42. 42.
    Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622–2627CrossRefGoogle Scholar
  43. 43.
    Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1787–1793CrossRefGoogle Scholar
  44. 44.
    Okamoto Y (2009) Appl Surf Sci 256:335–341CrossRefGoogle Scholar
  45. 45.
    Matter PH, Zhang L, Ozkan US (2006) J Catal 239:83–96CrossRefGoogle Scholar
  46. 46.
    Wiggins-Camacho JD, Stevenson KJ (2009) J Phys Chem C 113:19082–19090CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Navneet Soin
    • 1
    • 5
    Email author
  • Susanta Sinha Roy
    • 2
  • Surbhi Sharma
    • 3
  • Thomas Thundat
    • 4
  • James A. McLaughlin
    • 1
  1. 1.Nanotechnology and Integrated Bioengineering Centre (NIBEC)University of Ulster at JordanstownNewtownabbeyUK
  2. 2.Department of Physics, School of Natural SciencesShiv Nadar UniversityGautam Budh NagarIndia
  3. 3.School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
  4. 4.Chemical and Materials Engineering DepartmentUniversity of AlbertaEdmontonCanada
  5. 5.Institute of Renewable Energy and Environmental Technologies (IREET), Knowledge Centre for Materials Chemistry (KCMC)University of BoltonBoltonUK

Personalised recommendations