Advertisement

Journal of Solid State Electrochemistry

, Volume 17, Issue 6, pp 1553–1562 | Cite as

Screen-printed palladium electroanalytical sensors

  • Jonathan P. Metters
  • Fang Tan
  • Craig E. Banks
Original Paper

Abstract

We report the first known fabrication of palladium screen-printed macroelectrodes which are electrochemically characterised, and their potential usefulness in analytical applications explored towards the sensing of formaldehyde, hydrazine and protons with limits of detection (3σ) of 1.6 mM, 4.0 μM and 41.5 μM determined for each of the analytes, respectively. Proof of concept for the potential sensing of both hydrogen and methane gas is also explored. Such applications demonstrate the plethora of potential uses for screen-printed sensors, particularly those fabricated utilising palladium, giving rise to the niche market of sensors capable for the utilisation away from the laboratory and within the field.

Keywords

Palladium screen-printed macroelectrodes Electroanalytical sensing Formaldehyde sensing Methane sensing 

References

  1. 1.
    Elam M, Conway BE (1988) Sorption behavior of the overpotential-deposited H species in the cathodic H2 evolution reaction at Pd and Pt-Pd electroplated composite electrodes. J Electrochem Soc 135:1678–1685CrossRefGoogle Scholar
  2. 2.
    Simonet J (2005) The one electron reduction of primary alkyl iodides at palladiated surfaces. A convenient and general source of alkyl radicals. J Electroanal Chem 583:34–45CrossRefGoogle Scholar
  3. 3.
    Iwakura C, Ito T, Inoue H (1999) Construction of a new dehydrogenation system using a two-compartment cell separated by a palladized Pd sheet electrode. J Electroanal Chem 463:116–118CrossRefGoogle Scholar
  4. 4.
    Iwakura C, Abe T, Inoue H (1996) A new successive system for hydrogenation of styrene using a two-compartment cell separated by a Pd sheet electrode. J Electrochem Soc 143:L71–L72CrossRefGoogle Scholar
  5. 5.
    Cleghorn SJC, Pletcher D (1993) The mechanism of electrocatalytic hydrogenation of organic molecules at palladium black cathodes. Electrochim Acta 38:425–430CrossRefGoogle Scholar
  6. 6.
    Breiter MW (1962) Comparative voltammetric study of methanol oxidation and adsorption on noble metal electrodes in perchloric acid solutions. Electrochim Acta 8:973–983CrossRefGoogle Scholar
  7. 7.
    Muller U, Dulberg A, Stoyanova A, Baltruschat H (1997) Reactions of halogenated hydrocarbons at Pt-group metals—II. On the adsorption rate at Pt and Pd electrodes. Electrochim Acta 42:2499–2509CrossRefGoogle Scholar
  8. 8.
    Blackburn TR, Campbell PC (1964) The chronopotentiometric oxidation of oxalic acid and oxalate ions at palladium anodes. J Electroanal Chem 8:145–150Google Scholar
  9. 9.
    Solis V, Iwasita T, Pavese A, Vielstich W (1988) Investigation of formic acid oxidation on palladium in acidic solutions by on-line mass spectroscopy. J Electroanal Chem 255:155–162CrossRefGoogle Scholar
  10. 10.
    Arevalo MC, Rodriquez JL, Pastor E (1999) Adsorption, oxidation and reduction reactions of propargyl alcohol on palladium as studied by electrochemical mass spectrometry. J Electroanal Chem 472:71–82CrossRefGoogle Scholar
  11. 11.
    Gimeno Y, Creus AH, Gonzalez S, Salvarezza RC, Arvia JA (2001) Preparation of 100–160-nm-sized branched palladium islands with enhanced electrocatalytic properties on HOPG. Chem Mater 13:1857–1864CrossRefGoogle Scholar
  12. 12.
    Grden M, Lukaszewski M, Jerkiewicz G, Czerwinski A (2008) Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53:7583–7598CrossRefGoogle Scholar
  13. 13.
    Lewis FA (1967) The palladium hydrogen system. Academic Press, London and New YorkGoogle Scholar
  14. 14.
    Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Khan Z, Masel RI (2005) J Power Sources 139:15CrossRefGoogle Scholar
  16. 16.
    Tao B, Miao F, Chu PK (2012) Electrochim Acta 65:149CrossRefGoogle Scholar
  17. 17.
    Miao F, Tao B, Sun L, Liu T, You J, Wang L, Chu PK (2010) J Power Sources 195:146CrossRefGoogle Scholar
  18. 18.
    Jiang SP, Ye Y, He T, Ho SB (2008) J Power Sources 185:179CrossRefGoogle Scholar
  19. 19.
    He HQ, Zhang L, Babaei A, Wang X, Jiang SP (2011) Co2MnO4 spinel-palladium co-infiltrated La0.7Ca0.3Cr0.5Mn0.5O3−δ cathodes for intermediate temperature solid oxide fuel cells. J Alloys Compd 509:9708CrossRefGoogle Scholar
  20. 20.
    Johnston DA, Cardosi MF, Vaughan DH (1995) The electrochemistry of hydrogen peroxide on evaporated gold/palladium composite electrodes. Manufacture and electrochemical characterization. Electroanalysis 7:520–526CrossRefGoogle Scholar
  21. 21.
    Yang CC, Kumar AS, Zen JM (2006) Electrocatalytic reduction and determination of dissolved oxygen at a preanodized screen-printed carbon electrode modified with palladium nanoparticles. Electroanalysis 18:64–69CrossRefGoogle Scholar
  22. 22.
    Dominguez Renedo O, Alonso-Lomillo MA, Arcos Martinez MJ (2007) Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73:202–219CrossRefGoogle Scholar
  23. 23.
    Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:1067–1076CrossRefGoogle Scholar
  24. 24.
    Li M, Li YT, Li DW, Long YT (2012) Recent developments and applications of screen-printed electrodes in environmental assays–a review. Anal Chim Acta 734:31–44CrossRefGoogle Scholar
  25. 25.
    Wang J, Pedrero M, Pamidi PVA, Cai X (1995) Metal-dispersed screen-printed carbon electrodes. Electroanalysis 7:1032–1034CrossRefGoogle Scholar
  26. 26.
    Wang J, Pedrero M, Cai XH (1995) Palladium-doped screen-printed electrodes for monitoring formaldehyde. Analyst 120:1969–1972CrossRefGoogle Scholar
  27. 27.
    Wang J, Chen Q (1994) Screen-printed glucose strip based on palladium-dispersed carbon ink. Analyst 119:1849–1851CrossRefGoogle Scholar
  28. 28.
    Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst 131:106–110CrossRefGoogle Scholar
  29. 29.
    Hallam PM, Kampouris DK, Kadara RO, Banks CE (2010) Graphite screen printed electrodes for the electrochemical sensing of chromium(VI). Analyst 135:1947CrossRefGoogle Scholar
  30. 30.
    Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355CrossRefGoogle Scholar
  31. 31.
    Lavagnini I, Antiochia R, Magno F (2004) An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 16:505CrossRefGoogle Scholar
  32. 32.
    Tang J, Petri M, Kibler LA, Kolb DM (2005) Pd deposition onto Au(111) electrodes from sulphuric acid solution. Electrochim Acta 51:125–132CrossRefGoogle Scholar
  33. 33.
    BirssVI CM, Phan T, Vanysek P, Zhang A (1996) An electrochemical study of the composition of thin, compact Pd oxide films. J Chem Soc Faraday Trans 92:4041–4047CrossRefGoogle Scholar
  34. 34.
    Kim KS, Gossman AF, Winograd N (1974) X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode. Anal Chem 46:197–200CrossRefGoogle Scholar
  35. 35.
    Zhang AJ, Birss VI, Vanysek P (1994) Impedance characterization of thin electrochemically formed palladium oxide films. J Electroanal Chem 378:63–75CrossRefGoogle Scholar
  36. 36.
    Chan HYH, Zou S, Weaver MJ (1999) Mechanistic differences between electrochemical and gas-phase thermal oxidation of platinum-group transition metals as discerned by surface-enhanced Raman spectroscopy. J Phys Chem B 103:11141–11151CrossRefGoogle Scholar
  37. 37.
    Burke LD, Roche MBC (1985) An electrochemical investigation of monolayer and multilayer oxide films on palladium in aqueous media. J Electroanal Chem 186:139–154CrossRefGoogle Scholar
  38. 38.
    Burke LD, McCarthy MM, Roche MBC (1984) Influence of solution pH on monolayer and multilayer oxide formation processes on gold and palladium. J Electroanal Chem 167:291–297CrossRefGoogle Scholar
  39. 39.
    Zhou ZL, Kang TF, Zhang Y, Cheng SY (2009) Electrochemical sensor for formaldehyde based on Pt–Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim Acta 164:133–138CrossRefGoogle Scholar
  40. 40.
    Wang J, Pamidi PVA, Cepria G (1996) Electrocatalysis and amperometric detection of aliphatic aldehydes at platinum-palladium alloy coated glassy carbon electrode. Anal Chim Acta 330:151–158CrossRefGoogle Scholar
  41. 41.
    Vianello F, Stefani A, Di Paolo ML, Rigo A, Lui A, Margesin B, Zen M, Scarpa M, Soncini G (1996) Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens Actuators B 37:49–54CrossRefGoogle Scholar
  42. 42.
    Herschkovic Y, Eshkenazi I, Campbell CE, Rishpon J (2000) An electrochemical biosensor for formaldehyde. J Electroanal Chem 491:182–187CrossRefGoogle Scholar
  43. 43.
    Zhang L, Hu JF, Song P, Qin HW, Liu XD, Jiang MH (2005) Formaldehyde-sensing characteristics of perovskite La0.68Pb0.32FeO3 nano-materials. Physica B 370:259–263CrossRefGoogle Scholar
  44. 44.
    Mohlmann GR (1985) Formaldehyde detection in air by laser-induced fluorescence. Appl Spectrosc 39:98–101CrossRefGoogle Scholar
  45. 45.
    Mann B, Grajeski ML (1987) New chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high-performance liquid chromatography with peroxyoxalate chemiluminescence. J Chromatogr 386:149–158CrossRefGoogle Scholar
  46. 46.
    Dumas T (1982) Determination of formaldehyde in air by gas chromatography. J Chromatogr 247:289–295CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Zhang M, Cai Z, Chen M, Cheng F (2012) A novel electrochemical sensor for formaldehyde based on palladium nanowire arrays electrode in alkaline media. Electrochim Acta 68:172–177CrossRefGoogle Scholar
  48. 48.
    Safavi A, Maleki N, Farjami F, Farjami E (2009) Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. J Electroanal Chem 626:75–79CrossRefGoogle Scholar
  49. 49.
    Safavi A, Farjami F (2011) Electrochemical design of ultrathin palladium coated gold nanoparticles as nanostructured catalyst for amperometric detection of formaldehyde. Electroanalysis 23:1842–1842CrossRefGoogle Scholar
  50. 50.
    Yi Q, Niu F, Yu W (2011) Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films 519:3155–3161CrossRefGoogle Scholar
  51. 51.
    Jin GP, Li J, Peng X (2009) Preparation of platinum nanoparticles on polyaniline-coat multi-walled carbon nanotubes for adsorptive stripping voltammetric determination of formaldehyde in aqueous solution. J Appl Electrochem 39:1889–1895CrossRefGoogle Scholar
  52. 52.
    Li F, Zhang B, Dong S, Wang E (1997) A novel method of electrodepositing highly dispersed nano palladium particles on glassy carbon electrode. Electrochim Acta 42:2563–2568CrossRefGoogle Scholar
  53. 53.
    Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta 611:151–155CrossRefGoogle Scholar
  54. 54.
    Liu J, Zhou W, You T, Li F, Wang E, Dong S (1996) Detection of hydrazine, methylhydrazine, and isoniazid by capillary electrophoresis with a palladium-modified microdisk array electrode. Anal Chem 68:3350–3353CrossRefGoogle Scholar
  55. 55.
    Metters JP, Tan F, Kadara RO, Banks CE (2012) Platinum screen printed electrodes for the electroanalytical sensing of hydrazine and hydrogen peroxide. Anal Methods 4:1272–1277CrossRefGoogle Scholar
  56. 56.
    Metters JP, Tan F, Kadara RO, Banks CE (2012) Electroanalytical properties of screen printed shallow recessed electrodes. Anal Methods 4:3140–3149CrossRefGoogle Scholar
  57. 57.
    Panchompoo J, Aldous L, Downing C, Crossley A, Compton RG (2011) Facile synthesis of Pd nanoparticle modified carbon black for electroanalysis: application to the detection of hydrazine. Electroanalysis 23:1568–1578CrossRefGoogle Scholar
  58. 58.
    Haghighi B, Hamidi H, Bozorgzadeh S (2010) Sensitive and selective determination of hydrazine using glassy carbon electrode modified with Pd nanoparticles decorated multiwalled carbon nanotubes. Anal Bioanal Chem 398:1411–1416CrossRefGoogle Scholar
  59. 59.
    Breiter MW (1980) Effect of chemisorbed carbon monoxide on the rate of hydrogen dissolution in palladium electrodes at potentials of the α phase. J Electroanal Chem 109:253–260CrossRefGoogle Scholar
  60. 60.
    Mengoli G, Fabrizio M, Manduchi C, Zannoni G (1993) Surface and bulk effects in the extraction of hydrogen from highly loaded Pd sheet electrodes. J Electroanal Chem 350:57–72CrossRefGoogle Scholar
  61. 61.
    Guo DJ, Li HL (2005) High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes. J Coll Int Sci 286:274–279CrossRefGoogle Scholar
  62. 62.
    Horkans J (1980) Film thickness effects on hydrogen sorption at palladium electrodes. J Electroanal Chem 106:245–249CrossRefGoogle Scholar
  63. 63.
    Enyo M (1982) Kinetics of the elementary steps of the hydrogen electrode reaction on Pd in acidic solution. J Electroanal Chem 134:75–86CrossRefGoogle Scholar
  64. 64.
    Bucur RV, Bota F (1981) The effect of the anion on the transfer equilibrium at the (PD-H)/electrolyte interface. Electrochim Acta 26:1653–1655CrossRefGoogle Scholar
  65. 65.
    McBreen J (1990) Absorption of electrolytic hydrogen and deuterium by Pd: the effect of cyanide adsorption. J Electroanal Chem 287:279–291CrossRefGoogle Scholar
  66. 66.
    Burke LD, Casey JK (1993) The electrocatalytic behaviour of palladium in acid and base. J Appl Electrochem 23:573–582CrossRefGoogle Scholar
  67. 67.
    Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) Nano-electrochemical detection of hydrogen or protons using palladium nanoparticles: distinguishing surface and bulk hydrogen. Chem Phys Chem 7:1081–1085CrossRefGoogle Scholar
  68. 68.
    Schiermeier Q (2006) Methane finding baffles scientists. Nature 439:128–128CrossRefGoogle Scholar
  69. 69.
    Li J, Zhang J, Zhou Y, Shuang S, Dong C, Choi MMD (2012) Electrodeposition of palladium nanoparticles on fullerene modified glassy carbon electrode for methane sensing. Electrochim Acta 76:288–291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonathan P. Metters
    • 1
  • Fang Tan
    • 1
  • Craig E. Banks
    • 1
  1. 1.Faculty of Science and Engineering, School of Chemistry and the Environment, Division of Chemistry and Environmental ScienceManchester Metropolitan UniversityManchesterUK

Personalised recommendations