Journal of Solid State Electrochemistry

, Volume 17, Issue 5, pp 1473–1478 | Cite as

Potentiometric CO2 sensor with Au,Li2CO3/Li+-electrolyte/LiMn2O4 structure

Original Paper

Abstract

A new solid-state electrochemical cell for CO2 sensing has been set up using Li3PO4 and Li4SiO4 (LiSiPO) solid electrolyte and Li1-δMn2O4/MnO2 as reference electrode. The electromotive force (EMF), the reproducibility, and the long-term stability of the sensor signals have been examined at temperature between 400 and 500 °C exposure on dry atmosphere. The EMF is dependent on the partial pressure of CO2 and can be expressed by the Nernst equation. The cell is long-term stable at temperature as low as 450 °C and the sensor signals are reproducible with high accuracy.

Keywords

LiSiPO Li1-δMn2O4/MnO2 CO2 Gas sensor 

Notes

Acknowledgment

The financial support of Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2010-149), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT.NSRIF.2011099), and China Postdoctoral Science Foundation (2012 M520717) is gratefully acknowledged.

References

  1. 1.
    Moebius HH (2004) Galvanic solid electrolyte cells for the measurement of CO2 concentrations. J Solid State Electrochem 8(2):94–109CrossRefGoogle Scholar
  2. 2.
    Hong HS, Kim JW, Jung SJ, Park CO (2005) Thick film planar CO2 sensors based on Na β-alumina solid electrolyte. J Electroceram 15(2):151–157CrossRefGoogle Scholar
  3. 3.
    Wang L, Zhou H, Liu K, Wu Y, Dai L, Kumar RV (2008) A CO2 gas sensor based upon composite Nasicon/Sr-β-Al2O3 bielectrolyte. Solid State Ionics 179:1662–1665CrossRefGoogle Scholar
  4. 4.
    Morio M, Hyodo T, Shimizu Y, Egashira M (2009) Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors. Sens Actuators B 139:563–569CrossRefGoogle Scholar
  5. 5.
    Wierzbicka M, Pasierb P, Rekas M (2007) CO2 sensor studies by impedance spectroscopy. Phys B 387:302–312CrossRefGoogle Scholar
  6. 6.
    Sadaoka Y (2007) NASICON based CO2 gas sensor with an auxiliary electrode composed of Li2CO3–metal oxide mixtures. Sens Actuators B 121:194–199CrossRefGoogle Scholar
  7. 7.
    Shim HB, Kang JH, Choi JW, Yoo KS (2006) Characteristics of thick-film CO2 sensors based on NASICON with Na2CO3–CaCO3 auxiliary phases. J Electroceram 17:971–974CrossRefGoogle Scholar
  8. 8.
    Ambekar P, Randhawa J, Bhoga SS, Singh K (2004) Galvanic CO2 sensor with Li2O:B2O3 glass ceramics based composite. Ionics 10(1–2):45–49CrossRefGoogle Scholar
  9. 9.
    Kim DH, Yoon JY, Park HC, Kim KH (2001) Fabrication and characteristics of CO2-gas sensor using Li2CO3–Li3PO4–Al2O3 electrolyte and LiMn2O4 reference electrode. Sens Actuators B 76:591–599Google Scholar
  10. 10.
    Narita H, Can ZY, Mizusaki J, Tagawa H (1995) Solid state CO2 sensor using an electrolyte in the system Li2CO3–Li3PO4–Al2O3. Solid State Ionics 79:349–353CrossRefGoogle Scholar
  11. 11.
    Figueroa OL, Lee C, Akbar SA, Szabo NF, Trimboli JA, Dutta PK, Sawaki N, Soliman AA, Verweij H (2005) Temperature-controlled CO, CO2 and NOx sensing in a diesel engine exhaust stream. Sens Actuators B 107(2):839–848CrossRefGoogle Scholar
  12. 12.
    Zhang P, Lee C, Verweij H, Akbar SA, Hunter G, Dutta PK (2007) High temperature sensor array for simultaneous determination of O2, CO, and CO2 with kernel ridge regression data analysis. Sens Actuators B 123(2):950–963CrossRefGoogle Scholar
  13. 13.
    Park CO, Lee C, Akbar SA, Hwang J (2003) The origin of oxygen dependence in a potentiometric CO2 sensor with Li-ion conducting electrolytes. Sens Actuators B 88:53–59CrossRefGoogle Scholar
  14. 14.
    Noh WS, Satyanarayana L, Park JS (2005) Potentiometric CO2 sensor using Li+ ion conducting Li3PO4 thin film electrolyte. Sensors 5(11):465–472CrossRefGoogle Scholar
  15. 15.
    Lee C, Akbar SA, Park CO (2001) Potentiometric CO2 gas sensorwith lithiumphos-phorous oxynitride electrolyte. Sens Actuators B 76:591–599Google Scholar
  16. 16.
    Ménil F, Daddah BO, Tardy P, Debéda H, Lucat C (2005) Planar LiSICON-based potentiometric CO2 sensors: influence of the working and reference electrodes relative size on the sensing properties. Sens Actuators B 107(2):695–707CrossRefGoogle Scholar
  17. 17.
    Fergus JW (2008) A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors. Sens Actuators B 134:1034–1041CrossRefGoogle Scholar
  18. 18.
    Kyritsis A, Siakantari M, Vassilikou-Dova A, Pissis P, Varotsos P (2000) Dielectric and electrical properties of polycrystalline rocks at various hydration levels. IEEE 7(4):493–497Google Scholar
  19. 19.
    Kyritsis A, Siakantari M, Vassilikou-Dova A, Pissis P, Varotsos P (2001) Large low frequency dielectric constant exhibited by hydrated rock materials. Proc Japan Acad Ser B 77(2):19–23CrossRefGoogle Scholar
  20. 20.
    Huang W, Shuk P, Greenblatt M, Croft M, Chen F, Liu MJ (2000) Structural and electrical characterization of a novel mixed conductor: CeO2-Sm2O3-ZrO2 solid solution. J Electrochem Soc 147:4196–4202CrossRefGoogle Scholar
  21. 21.
    Dudek M, Bogusz W, Zych L, Trybalska B (2008) Electrical and mechanical properties of CeO2-based electrolytes in the CeO2–Sm2O3–O3 (M = La, Y) system. Solid State Ionics 179:164–167CrossRefGoogle Scholar
  22. 22.
    Hu YW, Raistrick ID, Huggins RA (1977) Ionic conductivity of lithium orthosilicate–lithium phosphate solid solutions. J Electrochem Soc 124(8):1240–1242CrossRefGoogle Scholar
  23. 23.
    Zhu YM, Chu W, Weppner W (2009) Investigation of gas concentration cell based on LiSiPO electrolyte and Li2CO3, Au electrode. Chinese Sci Bull 54(8):1334–1339CrossRefGoogle Scholar
  24. 24.
    Barin I (1993) Thermochemical data of pure substances. VCH, Weinheim, New YorkGoogle Scholar
  25. 25.
    Kida T, Kawate H, Shimanoe K, Miura N, Yamazoe N (2000) Interfacial structure of NASICON-based sensor attached with Li2CO3–CaCO3 auxiliary phase for detection of CO2. Solid State Ionics 136(137):647–653CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Applied ChemistryHarbin Institute of Technology (Weihai)WeihaiChina
  2. 2.Christian-Albrechts UniversityInstitute of Inorganic ChemistryKielGermany
  3. 3.Faculty of Chemical EngineeringHarbin Institute of Technology (Weihai)WeihaiChina

Personalised recommendations