Advertisement

Journal of Solid State Electrochemistry

, Volume 17, Issue 5, pp 1435–1447 | Cite as

Structural and electrochemical characterization of polyaniline/LiCoO2 nanocomposites prepared via a Pickering emulsion

  • Karima Ferchichi
  • Souhaira Hbaieb
  • Noureddine Amdouni
  • Valérie Pralong
  • Yves Chevalier
Original Paper

Abstract

Polyaniline (PANI)/LiCoO2 nanocomposite materials are successfully ready through a solid-stabilized emulsion (Pickering emulsion) route. The properties of nanocomposite materials have been put to the test because of their possible relevance to electrodes of lithium batteries. Such nanocomposite materials appear thanks to the polymerization of aniline in Pickering emulsion stabilized with LiCoO2 particles. PANI has been produced through oxidative polymerization of aniline and ammonium persulfate in HCl solution. The nanocomposite materials of PANI/LiCoO2 could be formed with low amounts of PANI. The morphology of PANI/LiCoO2 nanocomposite materials shows nanofibers and round-shape-like morphology. It was found that the morphology of the resulting nanocomposites depended on the amount of LiCoO2 used in the reaction system. Ammonium persulfate caused the loss of lithium from LiCoO2 when it was used at high concentration in the polymerization recipe. Highly resolved splitting of 006/102 and 108/110 peaks in the XRD pattern provide evidence to well-ordered layered structure of the PANI/LiCoO2 nanocomposite materials with high LiCoO2 content. The ratios of the intensities of 003 and 104 peaks were found to be higher than 1.2 indicating no pronounced mixing of the lithium and cobalt cations. The electrochemical reactivity of PANI/LiCoO2 nanocomposites as positive electrode in a lithium battery was examined during lithium ion deinsertion and insertion by galvanostatic charge–discharge testing; PANI/LiCoO2 nanocomposite materials exhibited better electrochemical performance by increasing the reaction reversibility and capacity compared to that of the pristine LiCoO2 cathode. The best advancement has been observed for the PANI/LiCoO2 nanocomposite 5 wt.% of aniline.

Keywords

Conducting polymer Pickering emulsion PANI/LiCoO2 nanocomposite materials Lithium battery materials 

References

  1. 1.
    Abe T, Koyama T (2011) Calphad 35:209–218CrossRefGoogle Scholar
  2. 2.
    Jinpeng Y, Han Z, Xiaohong H, Zhan H, Zhou Y, Liu X (2013) J Power Sources 225:34–39CrossRefGoogle Scholar
  3. 3.
    MacDiarmid AG (2001) Angew Chem Int Ed 40:2581–2590CrossRefGoogle Scholar
  4. 4.
    Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99–117CrossRefGoogle Scholar
  5. 5.
    Virji S, Kaner RB, Weiller BH (2005) Chem Mater 17:1256–1260CrossRefGoogle Scholar
  6. 6.
    Venkatachalam S, Prabhakaran PV (1998) Synth Metals 97:141–146CrossRefGoogle Scholar
  7. 7.
    Tahir ZM, Alocilja EC, Grooms DL (2007) Sensors 7:1123–1140CrossRefGoogle Scholar
  8. 8.
    Liang L, Liu J, Windisch CF, Exarhos GJ, Lin Y (2002) Angew Chem Int Ed 41:3665–3668CrossRefGoogle Scholar
  9. 9.
    Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) Electrochim Acta 39:273–287CrossRefGoogle Scholar
  10. 10.
    Talbi H, Just PE, Dao LH (2003) J Appl Electrochem 33:465–473CrossRefGoogle Scholar
  11. 11.
    Peng C, Zhang SW, Jewell D, Chen GZ (2008) Prog Nat Sci 18:777–788CrossRefGoogle Scholar
  12. 12.
    Huang LM, Wen TC, Gopalan A (2006) Electrochim Acta 51:3469–3476CrossRefGoogle Scholar
  13. 13.
    Lota K, Khomenko V, Frackowiak E (2004) J Phys Chem Solids 65:295–301CrossRefGoogle Scholar
  14. 14.
    Kanatzidis MG, Wu CG, Marcy HO, Kannewurf CR (1989) J Am Chem Soc 111:4139–4141CrossRefGoogle Scholar
  15. 15.
    Leroux F, Koene BE, Nazar LF (1996) J Electrochem Soc 143:L181–L183CrossRefGoogle Scholar
  16. 16.
    Leroux F, Goward G, Power WP, Nazar LF (1997) J Electrochem Soc 144:3886–3895CrossRefGoogle Scholar
  17. 17.
    Ruiz-Hitzky E (1993) Adv Mater 5:334–340CrossRefGoogle Scholar
  18. 18.
    Ruiz-Hitzky E, Aranda P, Quim AN (1997) Int Ed 93:197–212Google Scholar
  19. 19.
    Gomez-Romero P (2001) Adv Mater 13:163–174CrossRefGoogle Scholar
  20. 20.
    Ahn D, Koo YM, Kim MG, Shin N, Park J, Eom J, Cho J, Shin TJ (2010) J Phys Chem C 114:3675–3680CrossRefGoogle Scholar
  21. 21.
    Chen WM, Huang YH, Yuan LX (2011) J Electroanal Chem 660:108–113CrossRefGoogle Scholar
  22. 22.
    Neves S, Canobre SC, Oliveira RS, Polo Fonseca C (2009) J Power Sources 189:1167–1173CrossRefGoogle Scholar
  23. 23.
    Xiao Q, Tan X, Ji L, Xue J (2007) Synth Met 157:784–791CrossRefGoogle Scholar
  24. 24.
    Sullivan AP, Kilpatrick PK (2002) Ind Eng Chem Res 41:3389–3404CrossRefGoogle Scholar
  25. 25.
    Binks BP, Clint JH (2002) Langmuir 18:1270–1273CrossRefGoogle Scholar
  26. 26.
    He Y, Yu X (2007) Mater Lett 61:2071–2074CrossRefGoogle Scholar
  27. 27.
    He Y (2005) Appl Surf Sci 249:1–4CrossRefGoogle Scholar
  28. 28.
    He Y (2004) Powder Technol 147:59–63CrossRefGoogle Scholar
  29. 29.
    He Y (2005) Mater Chem Phys 92:134–137CrossRefGoogle Scholar
  30. 30.
    Zhan SH, Li Y, Yu HB (2008) J Dispersion Sci Technol 29:702–705CrossRefGoogle Scholar
  31. 31.
    Song GP, Bo J, Guo R (2005) Colloid Polym Sci 283:677–680CrossRefGoogle Scholar
  32. 32.
    Mosqueda Y, Pérez-Cappe E, Arana J, Longo E, Ries A, Cilense M, Nascente PAP, Aranda P, Ruiz-Hitzky E (2006) J Solid State Chem 179:308–314CrossRefGoogle Scholar
  33. 33.
    Qi Y, Zhang J, Qiu S, Sun L, Xu F, Liuzhang O, Sun D (2009) J Therm Anal Calorim 98:533–537CrossRefGoogle Scholar
  34. 34.
    Predoană L, Barău (Szatvanyi) A, Zaharescu M, Vasilchina H, Velinova N, Banov B, Momchilov A (2004) Proceedings of the International Workshop "Advanced Techniques for Energy Sources Investigation and Testing" 4–9 Sept Sofia, BulgariaGoogle Scholar
  35. 35.
    Song SW, Han KS, Fujita H, Yoshimura M (2001) Chem Phys Lett 344:299–304CrossRefGoogle Scholar
  36. 36.
    do Nascimento GM, Silva CHB, Temperini MLA (2006) Macromol Rapid Commun 27:255–259CrossRefGoogle Scholar
  37. 37.
    Tang CW, Wang CB, Chien SH (2008) Thermochim Acta 473:68–73CrossRefGoogle Scholar
  38. 38.
    Gabrisch H, Kombolias M, Mohanty D (2010) Solid State Ionics 181:71–78CrossRefGoogle Scholar
  39. 39.
    Reimers JN, Dahn JR (1992) J Electochem Soc 139:2091–2097CrossRefGoogle Scholar
  40. 40.
    Wu TM, Lin YW, Liao CS (2005) Carbon 43:734–740CrossRefGoogle Scholar
  41. 41.
    Ding Y, Zhang P, Jiang Y, Gao D (2007) Solid State Ionics 178:967–971CrossRefGoogle Scholar
  42. 42.
    Qi Y, Zhang J, Qiu S, Sun L, Xu F, Zhu M, Liuzhang O, Sun D (2009) J Therm Anal Calorim 98:533–537CrossRefGoogle Scholar
  43. 43.
    Sridevi V, Malathi S, Devi CS (2011) Chem Sci J 26:1–6Google Scholar
  44. 44.
    Zhu C-L, Chou S-W, He S-F, Liao W-N, Chen C-C (2007) Nanotechnology 18:275604–275609CrossRefGoogle Scholar
  45. 45.
    Shreepathi S, Holze R (2006) Langmuir 22:5196–5204CrossRefGoogle Scholar
  46. 46.
    Wei Y, Kim KB, Chen G, Park CW (2008) Mater Charact 59:1196–1200CrossRefGoogle Scholar
  47. 47.
    Hashiba M, Okamoto H, Nurishi Y, Hiramatsu K (1988) J Mater Sci 23:2893–2896CrossRefGoogle Scholar
  48. 48.
    Kim DH, Jeong ED, Kim SP, Shim YB (2000) Bull Korean Chem Soc 21:1125–1132Google Scholar
  49. 49.
    Teshima K, Lee S, Mizuno Y, Inagaki H, Hozumi M, Kohama K, Yubuta K, Shishido T, Oishi S (2010) J Am Chem Soc. doi: 10.1021/cg100705d
  50. 50.
    Perez-Cappe E, Mosqueda Y, Martınez R, Milian CR, Sanchez O, Varela JA, Hortencia A, Souza E, Arandad P, Ruiz-Hitzky E (2008) J Mater Chem 18:3965–3971CrossRefGoogle Scholar
  51. 51.
    Julien CM (2003) Solid State Ionics 157:57–71CrossRefGoogle Scholar
  52. 52.
    Lu CH, Lin SW (2001) J Power Sources 97–98:458–460CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karima Ferchichi
    • 1
  • Souhaira Hbaieb
    • 1
  • Noureddine Amdouni
    • 1
  • Valérie Pralong
    • 2
  • Yves Chevalier
    • 3
  1. 1.UR. Physico-Chimie des Matériaux Solides Faculté des Sciences de TunisTunisTunisia
  2. 2.Laboratoire de cristallographie et sciences des matériaux CRISMAT ENSICAENCaenFrance
  3. 3.Laboratoire d’Automatique et de Génie des Procédés (LAGEP)Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations