Advertisement

Journal of Solid State Electrochemistry

, Volume 17, Issue 5, pp 1409–1419 | Cite as

Electrodeposition of Zn–Mn alloys at high current densities from chloride electrolyte

  • M. Bučko
  • J. Rogan
  • B. Jokić
  • M. Mitrić
  • U. Lačnjevac
  • J. B. Bajat
Original Paper

Abstract

The Zn–Mn alloy electrodeposition on a steel electrode in chloride electrolyte was investigated with the aim of obtaining deposits with as high as possible Mn percent. It was found that the deposition current density and concentration of Mn2+ ion in the chloride electrolyte significantly affect the Mn content in the alloy coating as well as the coating surface morphology. There was a transition from dendritic and spongy to smooth, bright, and amorphous structure of Zn–Mn deposits, when some critical deposition current density was reached, probably due to the metal oxyhydroxide inclusion in the coatings. Several plating additives were tested in order to decrease the hydroxide content and to improve surface appearance of the deposits. The 4-hydroxy-benzaldehyde was found to decrease oxygen and increase Mn percent in the coatings, and to significantly improve their surface morphology.

Keywords

Zn–Mn alloy Electrodeposition Coating Microstructure Morphology 

Notes

Acknowledgment

This research was financed by the Ministry of Education, Science and Technological Development, Republic of Serbia (Grant No. III 45019).

References

  1. 1.
    Conde A, Arenas MA, de Damborenea JJ (2011) Corros Sci 53:1489–1497CrossRefGoogle Scholar
  2. 2.
    Pistofidis N, Vourlias G, Konidaris S, Pavlidou E, Stergiou A, Stergioudis G (2006) Mater Lett 60:786–789CrossRefGoogle Scholar
  3. 3.
    Hu CC, Wang CK (2006) Electrochim Acta 51:4125–4134CrossRefGoogle Scholar
  4. 4.
    Boshkov N, Petrov K, Raichevsky G (2006) Surf Coat Technol 200:5995–6001CrossRefGoogle Scholar
  5. 5.
    Bučko M, Rogan J, Stevanović SI (2011) Perić-Grujić A, Bajat JB. Corros Sci 53:2861–2871CrossRefGoogle Scholar
  6. 6.
    Ortiz ZI (2009) Díaz-Arista P, Meas Y, Ortega–Borges R, Trejo G. Corros Sci 51:2703–2715CrossRefGoogle Scholar
  7. 7.
    Muller C, Sarret M, Andreu T (2002) J Electrochem Soc 149:C600–C606CrossRefGoogle Scholar
  8. 8.
    Eyraud M, Garnier A, Mazeron F, Crousier J (1995) Plat Surf Finish 82:63–70Google Scholar
  9. 9.
    Sylla D, Creus J, Savall C, Roggy O, Gadouleau M, Refait P (2003) Thin Solid Films 424:171–178CrossRefGoogle Scholar
  10. 10.
    Savall C, Rebere C, Sylla D, Gadouleau M, Refait P, Creus J (2006) Mat Sci Eng A 430:165–171CrossRefGoogle Scholar
  11. 11.
    Selvam M, Guruviah S (1990) Bull Electrochem 6:485–486Google Scholar
  12. 12.
    Gabe DR (1994) Electrochim Acta 39:1115–1121CrossRefGoogle Scholar
  13. 13.
    Jović VD, Jović BM, Pavlović MG (2006) Electrochim. Acta 51:5468–5477Google Scholar
  14. 14.
    Brenner A (1963) Electrodeposition of alloys, vol I. Academic, New YorkGoogle Scholar
  15. 15.
    Gomes A, da Silva Pereira MI (2006) Electrochim Acta 52:863–871CrossRefGoogle Scholar
  16. 16.
    Atanassov N, Mitreva V (1996) Surf Coat Technol 78:144–149CrossRefGoogle Scholar
  17. 17.
    Tkalenko DA, Pokhmurskyi VI, Tkalenko MD (1997) Mater Sci 33:845–847CrossRefGoogle Scholar
  18. 18.
    Danaee I, Noori S (2011) Int J Hydrogen Energy 36:12102–12111CrossRefGoogle Scholar
  19. 19.
    Zhang QB, Hua Y (2009) Hydrometallurgy 99:249–254CrossRefGoogle Scholar
  20. 20.
    Wu J, Jiang Y, Johnson C, Liu X (2008) J Power Sources 177:376–385CrossRefGoogle Scholar
  21. 21.
    Gong J, Zana I, Zangari G (2001) J Mat Sci Lett 20:1921–1923CrossRefGoogle Scholar
  22. 22.
    Yan H, Downes J, Boden PJ, Harris SJ (1996) J Electrochem Soc 143:1577–1583CrossRefGoogle Scholar
  23. 23.
    Ramanauskas R, Juskenas R, Kalinicenko A (2004) J Solid State Electrochem 8:416–421CrossRefGoogle Scholar
  24. 24.
    Gong J, Wei G, Barnard JA, Zangari G (2005) Metall Mater Trans A 36A:2705–2715CrossRefGoogle Scholar
  25. 25.
    Gong J, Zangari G (2003) Mat Sci Eng A 344:268–278CrossRefGoogle Scholar
  26. 26.
    Gong J, Zangari G (2004) Electrochem Solid-State Lett 7(9):C91–C94CrossRefGoogle Scholar
  27. 27.
    Moron LE, Mendez A, Castaneda F, Flores JG (2011) Ortiz-Frade L, Meas Y, Trejo G. Surf Coat Technol 205:4985–4992CrossRefGoogle Scholar
  28. 28.
    Valdés M, Vázquez M (2012) Composition, morphology, and optical properties of CuInSe2 thin films electrodeposited using constant and pulsed potentials. J Solid State Electrochem. doi: 10.1007/s10008-012-1821-5
  29. 29.
    Gong J, Zangari G (2002) J Electrochem Soc 149:C209–C217CrossRefGoogle Scholar
  30. 30.
    Li JC, Nan SH, Jiang Q (1998) Surf Coat Technol 106:135–139CrossRefGoogle Scholar
  31. 31.
    Chen PY, Hussey CL (2007) Electrochim Acta 52:1857–1864CrossRefGoogle Scholar
  32. 32.
    Hasse U, Fricke K, Dias D, Sievers G, Wulff H, Scholz F (2012) J Solid State Electrochem 16:2383–2389CrossRefGoogle Scholar
  33. 33.
    Okamoto H, Tanner LE (1990) Bull Alloy Phase Diagr 11:377–384CrossRefGoogle Scholar
  34. 34.
    Gong J, Zangari G (2006) ECS Trans 1(13):97–106CrossRefGoogle Scholar
  35. 35.
    Dietz H, Hoogestraat G, Laibach S, von Borstel D, Wiesener K (1995) J Power Sources 53:359–365CrossRefGoogle Scholar
  36. 36.
    Hsieh JC, Hu CC, Leea TC (2008) J Electrochem Soc 155(10):D675–D681CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Bučko
    • 1
  • J. Rogan
    • 1
  • B. Jokić
    • 1
  • M. Mitrić
    • 2
  • U. Lačnjevac
    • 3
  • J. B. Bajat
    • 1
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Nuclear Sciences “Vinča”University of BelgradeBelgradeSerbia
  3. 3.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations